【论文解读】MV3D-Net 用于自动驾驶的多视图3D目标检测网络
前言 MV3D-Net融合了视觉图像和激光雷达点云信息;它只用了点云的俯视图和前视图,这样既能减少计算量,又保留了主要的特征信息。随后生成3D候选区域,把特征和候选区域融合后输出最终的目
前言 MV3D-Net融合了视觉图像和激光雷达点云信息;它只用了点云的俯视图和前视图,这样既能减少计算量,又保留了主要的特征信息。随后生成3D候选区域,把特征和候选区域融合后输出最终的目
3D点云目标检测分类: 1 Lidar only, point-based method:直接输入点云数据给网络,或者将点云数据pre-process,如将三维点云投射到多个二维平面形成图像。 Complex-yolo首先将点云数据转换到2d-
摘要 大多数最先进的3D物体探测器严重依赖于激光雷达传感器,因为基于图像的方法和基于激光雷达的方法之间存在很大的性能差距。这是由于在三维场景中对预测的表示方式造成的。我们的方法,称为深度立体几何网络(DSGN)&#
[1] 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection(利用IoU预测进行半监督3D对象检测) 论文地址 代码地址 [2] Cate
博主最近一直都在看3D点云目标检测,且有一个可视化课设要结,还有一个CV课设,太酸爽了。 搜了一些paper,发现3D点云目标检测论文都不带公开源码的,GitHub上找项目配
简介 主要从技术变更历史、发展路线、数据集、数据融合的方式、当前知名的实验室以及大牛,其中的侧重点等方面介绍。当作是文献阅读的一种记录。有不足之处还请指出。 目前主流的分类方法是根据输入数据是否经过处理来作为判断依据的。其中主要
近期因实验需要利用kitti数据集,发现关于评估工具使用的部分网上教程不够详细,特此记录. 文末为了方便对数据结果观看,附上了修改代码. 1. KITTI评估工具来源 官网评估工具 下载后文件目录包含: matlab(2D/3D框显示和
摘要 三维目标检测是自动驾驶和机器人技术中的一项重要任务。虽然已经取得了很大的进展,但在估计远处和遮挡物体的三维姿态方面仍然存在挑战。本文提出了一种新的基于立体图像的三维检测框架 ZoomNet。 ZoomNet 采用了一个普
DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries 这篇论文的四个作者分别来自麻省理工学院、丰田研究院、卡耐基梅隆大学、理想汽车,最近被C
摘要 最近的许多工作通过视差估计恢复点云,然后应用3D探测器解决了这一问题。视差图是为整个图像计算的,这是昂贵的,并且不能利用特定类别的先验。相反,我们设计了一个实例视差估计网络 iDi