yolov5笔记(2)——训练自己的数据模型(随6.0更新)
个人体验yolov5最大的感觉就是惬意舒适。 比起object_detection 一个训练花费我10小时,一个只有1.1个小时(都是迁移训练) 一个检测速度等待了十几秒,一个只需0.01
个人体验yolov5最大的感觉就是惬意舒适。 比起object_detection 一个训练花费我10小时,一个只有1.1个小时(都是迁移训练) 一个检测速度等待了十几秒,一个只需0.01
目标检测结构理解 通常来说,对于目标检测而言,我们经常听到别人讲,”更换一下这个网络的backbone试试?“、”换个检测头吧“等相关这方面的术语。本篇讲围绕目标检测结构中的几个概念进行介
小目标检测总结
小目标的定义:图像中极少的小目标(32像素×32像素一下)
注:一般来说下采样率为2,一般的特征提取网络通常进行五次下采样。而五次下采样的倍率为2的五次方
基于无人机视觉的目标检测具有巨大的商业潜力和广泛的应用领域。与地面检测相比,无人机检测在空中无遮挡,具有更广的视野,能监测的范围更大,而且无人机使用成本低、环境适应能力强,适
数据准备工作
原始数据分两个文件夹,images(彩色图片)、mask(掩膜照片,一定要转换成灰度图images的名字若为“ABC.jpg”,mask里的掩膜
本文禁止转载!
1. YOLOv5环
论文:《Squeeze-and-Excitation Networks》 论文链接:https://arxiv.org/abs/1709.01507 代码地址:https://github.com/hu
《Salient Object Detection: A Survey》 url:https://arxiv.org/abs/1411.5878 笔记思路: 1.显著性检测的用途:根据显著性特征(空间域
YOLOv5代码注释版更新啦,注释的是最近的2021.07.14的版本,且注释更全 github: https://github.com/Laughing-q/yolov5_annotations Backbone
一:基于两阶段的目标检测算法 基于两阶段方法的目标检测又被称为基于**候选区域(region proposal)**的方法。
从2014年Grishick等人 在AlexNet 的基础上将region