Ubuntu18.04配置yolov5目标检测

1. 拉取代码

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

2. 模型测试

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5x, custom

# Images
img = 'https://sup.51qudong.com/wp-content/uploads/csmbjc/zidane.jpg'  # or file, PIL, OpenCV, numpy, multiple

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

3. 通过detect.py测试

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

版权声明:本文为CSDN博主「令狐傻笑」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/linghu8812/article/details/117459639

令狐傻笑

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolov5 检测一类物体

使用yolov5官方框架检测一类物体 yolov5的官方框架可较好的对共80种类进行目标检测,本文介绍一种直接修改源代码来只检测一类物体的方法以及通用的方法(利用数据集训练自己的权重)。 一、直接修

Yolo(3)(项目)Yolo v3 目标检测(85分类)

目录 基础理论 一、 读取文件 二、神经网络初始化 1、搭建神经网络 2、GPU加速 三、打开摄像头、按帧读取图像 四、向神经网络输入 五、获取神经网络输出 1、获取各层名称 2、获取输出层名称 3、获取输出层图像&#xff