论文解读 用于弱监督表面缺陷分割的缺陷注意模板循环对抗网络 (Defect attention template generation cycleGAN for weakly supervised)
前言 该论文是一种解决模板的缺陷生成方法。通过Cyclegan 对每张待测图像(缺陷或者非缺陷)生成其对应的动态无缺陷模板,再通过对待测图像和动态模板进行模板匹配,阈值分割以获取像素级分割结果。为了提
前言 该论文是一种解决模板的缺陷生成方法。通过Cyclegan 对每张待测图像(缺陷或者非缺陷)生成其对应的动态无缺陷模板,再通过对待测图像和动态模板进行模板匹配,阈值分割以获取像素级分割结果。为了提