coco数据集中筛选出特定类别,并记录jpg文件名称

文章目录[隐藏]

代码1

coco数据集过大,希望从里面挑选特定的类别,来构成测试集。

以下cocodeal.py文件能够保留coco中指定的类别数据,同时生成.xml文件。具体应用可以见代码注释。

#cocodeal.py
#本文件处理coco数据集,删除指定类别数据。要处理的目录结构如下。最后生成Annotations和images备份文件。
#并且在images_coco文件夹中是我们想要的。
# 如下是必须需要的目录或文件,其中annotations存着.xml文件,images下的train2014和val2014存着.jpg文件,labels下的train2014和val2014存着.txt文件信息
# ├── coco
# │   ├── annotations   # 里面是*.xml
# │   ├── images
# │   │   ├── train2014 # 里面是*.jpg
# │   │   └── val2014   # 里面是*.jpg
# │   └── labels 
# │       ├── train2014 # 里面是*.txt 
# │       └── val2014   # 里面是*.txt
# |—— cocodeal.py # 本文件

#生成annotations_filtered和images_filtered文件夹
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw, ImageFile

ImageFile.LOAD_TRUNCATED_IMAGES = True
#if the dir is not exists,make it,else delete it
def mkr(path):
    if os.path.exists(path):
        shutil.rmtree(path)
        os.mkdir(path)
    else:
        os.mkdir(path)
###########################修改以下参数适配路径
#the path you want to save your results for coco to voc
savepath=""													# 保存的路径		
img_dir = savepath+'images_filtered/'		# 保存图片的文件夹路径
mkr(img_dir)

anno_dir = savepath+'annotations_filtered/'		# 保存xml的文件夹路径
mkr(anno_dir)

datasets_list=['train2014', 'val2014']      # 与 coco/images里的两个文件夹名一致
# datasets_list=['train2014']
# datasets_list = ['val2017']
# 你需要挑出的类的名称
classes_names = ["elephant"]  # 要保留的类别list

#Store annotations and train2014/val2014/... in this folder
dataDir = 'coco'	# coco数据集所在的位置。本文件与该文件夹在同一级目录下
###############################
headstr = """\
<annotation>
    <folder>VOC</folder>
    <filename>%s</filename>
    <source>
        <database>My Database</database>
        <annotation>COCO</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <size>
        <width>%d</width>
        <height>%d</height>
        <depth>%d</depth>
    </size>
    <segmented>0</segmented>
"""
objstr = """\
    <object>
        <name>%s</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>%d</xmin>
            <ymin>%d</ymin>
            <xmax>%d</xmax>
            <ymax>%d</ymax>
        </bndbox>
    </object>
"""

tailstr = '''\
</annotation>
'''

def id2name(coco):
    classes=dict()
    for cls in coco.dataset['categories']:
        classes[cls['id']]=cls['name']
    return classes

def write_xml(anno_path,head, objs, tail):
    f = open(anno_path, "w")
    f.write(head)
    for obj in objs:
        f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
    f.write(tail)
    f.close()

# 根据.jpg文件名,生成对应的.xml文件,并且把.jpg文件复制到dst_imgpath目录下
def save_annotations_and_imgs(coco,dataset,filename,objs):
    #eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
    anno_path=anno_dir+filename[:-3]+'xml'
    img_path=dataDir+'/images/'+dataset+'/'+filename
    # print(img_path)
    dst_imgpath=img_dir+dataset+"/"+filename

    img=cv2.imread(img_path)
    # print(img)
    if (img.shape[2] == 1):
        print(filename + " not a RGB image")
        return

    shutil.copy(img_path, dst_imgpath) #复制

    head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
    tail = tailstr
    write_xml(anno_path,head, objs, tail)


def showimg(coco,dataset,img,classes,cls_id,show=True):
    global dataDir
    if show:
        I=Image.open('%s/%s/%s/%s'%(dataDir,'images',dataset,img['file_name']))
    #Get the annotated information by ID
    annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
    # print(annIds)
    anns = coco.loadAnns(annIds)
    # print(anns)
    # coco.showAnns(anns)
    objs = []
    for ann in anns:
        class_name=classes[ann['category_id']]
        if class_name in classes_names:
            # print(class_name)
            if 'bbox' in ann:
                bbox=ann['bbox']
                xmin = int(bbox[0])
                ymin = int(bbox[1])
                xmax = int(bbox[2] + bbox[0])
                ymax = int(bbox[3] + bbox[1])
                obj = [class_name, xmin, ymin, xmax, ymax]
                objs.append(obj)
                if show:
                    draw = ImageDraw.Draw(I)
                    draw.rectangle([xmin, ymin, xmax, ymax])
    if show:
        plt.figure()
        plt.axis('off')
        plt.imshow(I)
        plt.show()

    return objs

# myfile = open("imageID.txt", "w+")
for dataset in datasets_list:
    mkr(img_dir+dataset)
    #./COCO/annotations/instances_train2014.json
    # .json文件所在的位置 
    annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)

    #COCO API for initializing annotated data
    coco = COCO(annFile)
    '''
    When the COCO object is created, the following information will be output:
    loading annotations into memory...
    Done (t=0.81s)
    creating index...
    index created!
    So far, the JSON script has been parsed and the images are associated with the corresponding annotated data.
    '''
    #show all classes in coco
    classes = id2name(coco)
    print(classes)
    #[1, 2, 3, 4, 6, 8]
    classes_ids = coco.getCatIds(catNms=classes_names)
    print(classes_ids)
    # exit()
    for cls in classes_names:
        #Get ID number of this class
        cls_id=coco.getCatIds(catNms=[cls])
        img_ids=coco.getImgIds(catIds=cls_id)
        print(cls,len(img_ids))
        # imgIds=img_ids[0:10]
        for imgId in tqdm(img_ids):
            # print(imgId, file=myfile)
            img = coco.loadImgs(imgId)[0]
            filename = img['file_name']
            # print(filename)
            objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
            # print(objs)
            save_annotations_and_imgs(coco, dataset, filename, objs)

# myfile.close()

代码2

通过上面代码能够筛选出想要的种类的数据集。如果觉得数据集过大,或者想要生成这些图片文件的名称(不含.jpg),可以通过以下代码来实现。

#getImageID.py
#本文件将提前取出前selct_n张train图片和val图片,并且提取出对应的annotations里的.xml文件,同时把文件名称(不含.jpg)存于文本文件中
#与cocodeal.py在同一目录,先运行cocodeal.py,再手动检查前selct_n张图片的内容,再运行本文件
#生成的文件存于同目录下的myimages和myannotations文件夹。以及train2014imgid.txt,val2014imgid.txt。
#有需要的话自己手动修改文件夹名称。可以先手动筛过images_filtered里前selct_n张图片再运行本文件。
# .
# ├── annotations_filtered 需要的文件夹
# ├── coco
# ├── cocodeal.py
# ├── getImageID.py 本文件
# ├── images_filtered 需要的文件夹
# ├── myannotations 生成的文件夹
# ├── myimages 生成的文件夹 
# ├── train2014imgid.txt 生成的文件
# ├── val2014imgid.txt 生成的文件
import os
import shutil

selct_n = 200 # 挑选出200张jpg图片
#if the dir is not exists,make it,else delete it
def mkr(path):
    if os.path.exists(path):
        shutil.rmtree(path)
        os.mkdir(path)
    else:
        os.mkdir(path)

img_src = "images_filtered/" # 从该路径下的train2014文件夹与val2014文件夹里面选出照片
anno_src = "annotations_filtered/"
img_path = "myimages/"
anno_path = "myannotations/"
mkr(img_path)  # 挑出来的图片保存在该文件夹下
mkr(anno_path)  # 挑出来的.xml文件保存在该文件夹下

sets = ['train2014', 'val2014'] # train的图片存放与myimages/train2014/文件夹下,val放在myimages/val2014/下
for x in sets:
    cnt = 0
    myfile = open(x+"imgid.txt", "w+") # 覆盖写。存储图片的名称(不含.jpg)
    mkr(img_path+x) # myimages/train2014/ 或 myimages/val2014/
    for dirpath, dirnames, filenames in os.walk(img_src+x):
        # print(filenames)
        print(dirnames)
        print(dirpath)
        for filename in filenames:
            cnt+=1
            if cnt > selct_n:
                break
            print(filename[:-4], file=myfile)
            shutil.copy(src=dirpath+"/"+filename, dst=img_path+x+"/"+filename)
            shutil.copy(src=anno_src+filename[:-4]+".xml", dst=anno_path+filename[:-4]+".xml")
    myfile.close()

版权声明:本文为CSDN博主「hh_is_vegetable」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hh1986170901/article/details/122791169

hh_is_vegetable

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Day 14 - 安装与执行 YOLO

Day 14 - 安装与执行 YOLO 在 介绍影像辨识的处理流程 - Day 10 有提到 YOLO 模型是由 Joseph Redmon 所提出,而到了 YOLOV4 后才换成另外一群人继续发展,

目标检测自动标注生成xml文件

前言 在训练目标检测时,标注数据是一项简单而又浪费时间的事情,如果能够自动标注数据将可以高效的扩充数据集,从而提高训练模型的效果。 目前能想到的一种自动标注方法是先训练一个检测效果较好的模型&#xff

Yolo v5 训练自己的数据集

Yolo v5 训练自己的数据集 前言 感谢各位大佬尤其是,博主:深度学习菜鸟,参考原文链接https://blog.csdn.net/qq_36756866/article/details/109

目标检测入门之矩形框IOU计算

1. 引言 在目标检测领域中,我们经常用IOU来衡量检测框和标注真实框之间的重叠程度,那么究竟该如何计算IOU呢? 闲话少说,我们直接进入今天的主题… 2. 什么是IOU? IOU(交并比 Intersection over