cocoapi+coco20i

下载cocoapi
git clone https://github.com/cocodataset/cocoapi.git
进入文件夹
cd cocoapi/PythonAPI
安装
python setup.py build_ext --inplace
python setup.py build_ext install
测试
输入python
输入
在这里插入图片描述
安装成功
coco20i
生成mask

下面展示一些 create_masks.py`。

from pycocotools.coco import COCO
import numpy as np
import cv2
import time
import os

for dataset in ['train2014', 'val2014']:
    annFile = os.path.join('annotations', f'instances_{dataset}.json')
    img_dir = dataset
    save_dir = 'train' if 'train' in dataset else 'val'

    if not os.path.exists(save_dir):
        print('{} has been created!'.format(save_dir))
        os.mkdir(save_dir)

    coco = COCO(annFile)
    # display COCO categories and supercategories
    cats = coco.loadCats(coco.getCatIds())

    nms = [cat['name'] for cat in cats]
    num_cats = len(nms)
    print('All {} categories.'.format(num_cats))
    print(nms)

    # get all images ids
    imgIds = coco.getImgIds()
    num_img = len(imgIds)
    print('All {} images.'.format(num_img))

    sum_time = 0
    for idx, im_id in enumerate(imgIds):
        start_time = time.time()
        # load annotations
        annIds = coco.getAnnIds(imgIds=im_id, iscrowd=False)
        if len(annIds) == 0:
            continue

        image = coco.loadImgs([im_id])[0]
        # image.keys: ['coco_url', 'flickr_url', 'date_captured', 'license', 'width', 'height', 'file_name', 'id']
        h, w = image['height'], image['width']
        gt_name = image['file_name'].split('.')[0] + '.png'
        gt = np.zeros((h, w), dtype=np.uint8)

        # ann.keys: ['area', 'category_id', 'bbox', 'iscrowd', 'id', 'segmentation', 'image_id']
        anns = coco.loadAnns(annIds)
        for ann_idx, ann in enumerate(anns):

            cat = coco.loadCats([ann['category_id']])
            cat = cat[0]['name']
            cat = nms.index(cat) + 1    # cat_id ranges from 1 to 80

            ## below is the original script
            seg = ann['segmentation'][0]
            seg = np.array(seg).reshape(-1, 2)    # [n_points, 2]
            cv2.fillPoly(gt, seg.astype(np.int32)[np.newaxis, :, :], int(cat))

        save_gt_path = os.path.join(save_dir, gt_name)
        cv2.imwrite(save_gt_path, gt)

        cost_time = time.time() - start_time
        sum_time += cost_time
        avg_time = sum_time*1.0/(idx + 1)
        left_time = avg_time * (len(imgIds) - idx)/60

        if idx % 100 == 0:
            print('Processed {}/{} images. Time: {:.4f} min'.format(idx, num_img, left_time))

版权声明:本文为CSDN博主「栗子是个菜」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_38974831/article/details/120981862

栗子是个菜

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

YOLO-Fastest训练自己的数据

YOLO-Fastest训练自己的数据 继续yolo-fastest的学习,上一篇已经基本跑通了yolo-fastest,接下来开始训练,本次代码依旧是:https://github.c

Day 14 - 安装与执行 YOLO

Day 14 - 安装与执行 YOLO 在 介绍影像辨识的处理流程 - Day 10 有提到 YOLO 模型是由 Joseph Redmon 所提出,而到了 YOLOV4 后才换成另外一群人继续发展,

目标检测自动标注生成xml文件

前言 在训练目标检测时,标注数据是一项简单而又浪费时间的事情,如果能够自动标注数据将可以高效的扩充数据集,从而提高训练模型的效果。 目前能想到的一种自动标注方法是先训练一个检测效果较好的模型&#xff