文章目录[隐藏]
1 torchstat 优缺点
优点:直接就可以使用,打印所以结构,信息详细,名字详细。
缺点:按照类的顺序进行打印,循环中未使用的结果也打印了。
1.1 安装工具包torchstat
pip install torchstat
1.2 测试参数
from torchstat import stat
# 导入模型,输入一张输入图片的尺寸
stat(model, (3, 224, 224))
1.3 结果
CCMBlk(
(relu): ReLU(inplace=True)
(conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
module name input shape output shape params memory(MB) MAdd Flops MemRead(B) MemWrite(B) duration[%] MemR+W(B)
0 relu 64 32 32 64 32 32 0.0 0.25 65,536.0 65,536.0 262144.0 262144.0 0.00% 524288.0
1 conv1 3 32 32 64 32 32 1792.0 0.25 3,538,944.0 1,835,008.0 19456.0 262144.0 40.03% 281600.0
2 conv2 64 32 32 64 32 32 36928.0 0.25 75,497,472.0 37,814,272.0 409856.0 262144.0 19.99% 672000.0
3 maxpool 64 32 32 64 16 16 0.0 0.06 131,072.0 65,536.0 262144.0 65536.0 39.98% 327680.0
total 38720.0 0.81 79,233,024.0 39,780,352.0 262144.0 65536.0 100.00% 1805568.0
===========================================================================================================================================
Total params: 38,720
-------------------------------------------------------------------------------------------------------------------------------------------
Total memory: 0.81MB
Total MAdd: 79.23MMAdd
Total Flops: 39.78MFlops
Total MemR+W: 1.72MB
2 torchsummary优缺点(*准确)
优点:需要把模型放在Cuda,只打印使用的结构。
缺点:名字使用的内部名字
2.1 安装工具包torchsummary
pip install torchsummary
2.2 测试参数
from torchsummary import summary
# 导入模型,输入一张输入图片的尺寸
summary(model.cuda(), input_size=(3, 32, 32), batch_size=-1)
2.3 结果
CCMBlk(
(relu): ReLU(inplace=True)
(conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 32, 32] 1,792
ReLU-2 [-1, 64, 32, 32] 0
Conv2d-3 [-1, 64, 32, 32] 36,928
ReLU-4 [-1, 64, 32, 32] 0
MaxPool2d-5 [-1, 64, 16, 16] 0
================================================================
Total params: 38,720
Trainable params: 38,720
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 2.12
Params size (MB): 0.15
Estimated Total Size (MB): 2.28
----------------------------------------------------------------
版权声明:本文为CSDN博主「张林克」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_45292794/article/details/108227437
暂无评论