Five aspects of researches about automatic drive perception by Waymo

文章目录[隐藏]

Main stream network model:

  • Pointpillar: Fast Encoders for Object Detection from Point Clouds by Lang et al.

paper:https://arxiv.org/pdf/1812.05784.pdf

  • PV-RCNN++:Point-Voxel Feature Set Abstraction for 3D Object Detection by Shi et al.

paper:https://arxiv.org/pdf/2102.00463.pdf

Five aspects of researches about automatic drive perception by Waymo.

SPG:Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation

  • targeted & light-weight model for improving LIDAR input quality against occlusions and poor weathers

  • Effectiveness verified by applying to popular and SOTA 3D detectors.

  • complete the 3D shape before Detection

paper:https://openaccess.thecvf.com/content/ICCV2021/papers/Xu_SPG_Unsupervised_Domain_Adaptation_for_3D_Object_Detection_via_Semantic_ICCV_2021_paper.pdf

3D-man:3D Multi-frame Attention Network for Object Detection

  • Complementary information from multiple frames

  • learned attention to fuse multi-frame

  • learn to fuse complementary information from multi-frame data via attention layers

paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Yang_3D-MAN_3D_Multi-Frame_Attention_Network_for_Object_Detection_CVPR_2021_paper.pdf

RSN: Range Sparse Net for Efficient,Accurate LIDAR 3D Object Detection

  • targeted feature selection via segmentation

  • Efficient backbone based on sparse conv

paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Sun_RSN_Range_Sparse_Net_for_Efficient_Accurate_LiDAR_3D_Object_CVPR_2021_paper.pdf

Labeling Automation: Offboard 3D Object Detection from Point Cloud Sequences

  • leverage structured information in the 3D space and temporal sequences.

  • Quality on-par with human labelers

paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Qi_Offboard_3D_Object_Detection_From_Point_Cloud_Sequences_CVPR_2021_paper.pdf

SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving

  • Generating realistic camera images for novel SDC and dynamic object poses

  • Scalable solution based on pre-collected LIDAR and camera data

paper:https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_SurfelGAN_Synthesizing_Realistic_Sensor_Data_for_Autonomous_Driving_CVPR_2020_paper.pdf

版权声明:本文为CSDN博主「平山村小明」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_46187561/article/details/121879797

平山村小明

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolov5测试和训练自己的数据集

ylov5测试与训练自己的数据集 项目地址:yolov5-git官方地址 说明和环境配置测试自己环境制作自己的数据集开始训练和检测自己的模型过程遇到的问题解决 1.环境配置和说明 本人未做深度学习方面的研究,