keras使用yolov3训练自己的数据时出现- val_loss: nan

先说方法,关闭加载预训练,在train.py进行如下修改

def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=2,
            weights_path='model_data/tiny_yolo_weights.h5'):

也就是将原来的 load_pretrained=True 修改为 Fasle。
至于原因,一开始我把网上的方法试了一遍都没用,然后我看了一下我的数据集和voc数据集,感觉我的数据集和voc的内容相差特别大,就盲猜关掉预训练,结果就可以了。

版权声明:本文为CSDN博主「硬光」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_30551297/article/details/122904852

硬光

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

YOLOX:高性能目标检测的最新实践 | 报告详解

近年来,目标检测的工程应用研究中,YOLO系列以快速响应、高精度、结构简单以及容易部署的特点备受工程研究人员的青睐。同时,YOLO系列存在需要手工设定样本正负导致模型泛化能力较差的问题。为了解决此类问题

YOLOX训练自己的数据集,txt形式

YOLOX官方支持训练VOC和COCO数据集,但习惯了Yolov3~v5的txt加载数据集,尤其是训练自己的数据集时,标签写入txt文本更方便些,但是YOLOX官方要你自己写&#xff0c