【MMDetection 目标检测框架学习】

前言

一、入门

二、MMCV

三、MMDetection

【MMDetection 源码解读之yolov3】

  1. 【MMDetection 源码解读之yolov3】Backbone - Darknet53.
  2. 【MMDetection 源码解读之yolov3】Neck - FPN.

Reference

CSDN:mmdetection源码阅读(一小部分).

版权声明:本文为CSDN博主「满船清梦压星河HK」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_38253797/article/details/120876402

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

单目3D目标检测调研

单目3D目标检测调研 一、 简介 现有的单目3D目标检测方案主要方案主要分为两类,分别为基于图片的方法和基于伪雷达点云的方法。   基于图片的方法一般通过2D-3D之间的几何约束来学习,包括目标形状信息&#xff0

如何使用Albumentations 对目标检测任务做增强

目录 1、导入所需的库 2、定义可视化函数显示图像上的边界框和类标签 3、获取图像和标注 4、使用RandomSizedBBoxSafeCrop保留原始图像中的所有边界框 5、定义增强管道 6、输入用于增强的图像和边框 7、其他不

实战深度学习目标检测:RCNN (1)

深度学习目标检测:RCNN 什么是目标检测?目标检测主要是明确从图中看到了什么物体?他们在什么位置。传统的目标检测方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域&#xff0c