ModuleNotFoundError: No module named ‘uaclient‘

这个问题,可能是因为安装了多个版本的python3导致, 我的xavier上默认的python3中, 进入了python3.7版本, 在python3.7中Import uaclient 是没有这个包。 而python3.6中有uaclient这个包。 将默认的Python3改为python3.6问题解决。

I'm trying to upgrade my desktop from ubuntu 16.04 to 18.04.
(I regret not having upgraded it earlier before the ubuntu 16.04 EOL arrived. Two weeks ago I have upgraded two 16.04 notebooks to 18.04 though eventhough it was after the EOL, at that time there was just small problems I could solve).
I did sudo apt update but I'm getting the error below during apt upgrade after that.

ckim@chan-ubuntu:~/prj/abdsn$ sudo apt upgrade
Reading package lists... Done
Building dependency tree       
Reading state information... Done
Calculating upgrade... Done
The following packages were automatically installed and are no longer required:
  cpp-5-aarch64-linux-gnu cpp-aarch64-linux-gnu cuda-command-line-tools-10-0 cuda-compiler-10-0 cuda-cublas-10-0 cuda-cublas-dev-10-0 cuda-cudart-10-0
  cuda-cudart-dev-10-0 cuda-cufft-10-0 cuda-cufft-dev-10-0 cuda-cuobjdump-10-0 cuda-cupti-10-0 cuda-curand-10-0 cuda-curand-dev-10-0 cuda-cusolver-10-0
  cuda-cusolver-dev-10-0 cuda-cusparse-10-0 cuda-cusparse-dev-10-0 cuda-documentation-10-0 cuda-driver-dev-10-0 cuda-gdb-10-0
  cuda-gpu-library-advisor-10-0 cuda-libraries-10-0 cuda-libraries-dev-10-0 cuda-license-10-0 cuda-memcheck-10-0 cuda-misc-headers-10-0 cuda-npp-10-0
  cuda-npp-dev-10-0 cuda-nsight-10-0 cuda-nsight-compute-10-0 cuda-nvcc-10-0 cuda-nvdisasm-10-0 cuda-nvgraph-10-0 cuda-nvgraph-dev-10-0 cuda-nvjpeg-10-0
  cuda-nvjpeg-dev-10-0 cuda-nvml-dev-10-0 cuda-nvprof-10-0 cuda-nvprune-10-0 cuda-nvrtc-10-0 cuda-nvrtc-dev-10-0 cuda-nvtx-10-0 cuda-nvvp-10-0
  cuda-samples-10-0 cuda-toolkit-10-0 cuda-tools-10-0 cuda-visual-tools-10-0 gcc-5-aarch64-linux-gnu-base gcc-5-cross-base libasan2-arm64-cross
  libatomic1-arm64-cross libc6-arm64-cross libc6-dev-arm64-cross libclang1-3.6 libgcc-5-dev-arm64-cross libgcc1-arm64-cross libgomp1-arm64-cross libgsoap8
  libitm1-arm64-cross libllvm3.6v5 libnunit-cil-dev libnunit-console-runner2.6.3-cil libnunit-core-interfaces2.6.3-cil libnunit-core2.6.3-cil
  libnunit-framework2.6.3-cil libnunit-mocks2.6.3-cil libnunit-util2.6.3-cil libpng16-16 libpython-dbg libpython2.7-dbg libstdc++-5-dev-arm64-cross
  libstdc++6-arm64-cross libubsan0-arm64-cross libvncserver1 libxmu-dev libxmu-headers linux-libc-dev-arm64-cross python-dbg python-kerberos python2.7-dbg
Use 'sudo apt autoremove' to remove them.
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
1 not fully installed or removed.
After this operation, 0 B of additional disk space will be used.
Do you want to continue? [Y/n] 
Setting up ubuntu-advantage-tools (27.0~16.04.1) ...
Traceback (most recent call last):
  File "<string>", line 2, in <module>
ModuleNotFoundError: No module named 'uaclient'
dpkg: error processing package ubuntu-advantage-tools (--configure):
 subprocess installed post-installation script returned error exit status 1
Errors were encountered while processing:
 ubuntu-advantage-tools
E: Sub-process /usr/bin/dpkg returned an error code (1)

版权声明:本文为CSDN博主「彩云的笔记」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/CAIYUNFREEDOM/article/details/118390136

彩云的笔记

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Meta-DETR | 图像级“元”学习提升目标检测精度

计算机视觉研究院专栏作者:Edison_GOne-shot目标检测旨在通过几个标注的样本来检测新的目标。之前的工作已经证明了元学习是一个很有前途的解决方案,它们中的大多数基本上是通过解决在区域上的元学习检测来进行分类

AP AR mAP ROC AUC(目标检测)

禁止转载!在做目标检测任务的时候,通常会制定规则来评估性能,就如下图所示,后面会慢慢道来其中的原理。 混淆矩阵中 TP、TN、FP、FN
在目标检测中,通常以IoU阈值作为

瑕疵检测(深度学习)

与通用目标检测的区别
相较与整张图片瑕疵区域的占比一般非常小,Faster R-CNN等检测模型对小物体检测不够好
深度学习从低层到高层不断去提炼高层语义信息,层数的增大细节的信息丢失得越多,对于缺