目标检测 (单阶段 无锚框 实例分割 评估)

单阶段

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

无锚框目标检测算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

小结

在这里插入图片描述
在这里插入图片描述

实例分割

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评估

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

目标检测mAP计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
AP=map的均值
在这里插入图片描述

版权声明:本文为CSDN博主「ChunyeLi」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_32512123/article/details/121593084

ChunyeLi

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Towards Open World Object Detection 论文阅读笔记

这是CVPR2021的一篇论文 开放世界目标检测: 在没有提供相关监督的情况下将无法分类的目标检测出来标记为unknown 能够在后续提供这些标签时,不忘记之前的类别同时渐进地学得这些unknown的类别 其实质