目标检测 (单阶段 无锚框 实例分割 评估)

单阶段

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

无锚框目标检测算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

小结

在这里插入图片描述
在这里插入图片描述

实例分割

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评估

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

目标检测mAP计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
AP=map的均值
在这里插入图片描述

版权声明:本文为CSDN博主「ChunyeLi」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_32512123/article/details/121593084

ChunyeLi

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

YOLO算法之YOLOv3精讲

目录 YOLOv3的改进 1. YOLOv3的第一个改进是网络的结构的改变 2. YOLOv3的第二个改进是多尺度训练 YOLOv3代码实战 1. 数据集标注 2. 数据预处理 YOLO系列总结 大家好,我是羽峰&#

使用CUDA+OpenCV加速yolo v4性能

YOLO是You-Only-Look-Once的缩写,它无疑是根据COCO数据集训练的最好的对象检测器之一。YOLOv4是最新的迭代版本,它在准确性和性能之间进行了权衡,使其成为最先进的对象检测器之一。