目标检测模型YOLOv3之提取特征

图像分类的章节中,我们已经讲解过了通过卷积神经网络提取图像特征。通过连续使用多层卷积和池化等操作,能得到语义含义更加丰富的特征图。在检测问题中,也使用卷积神经网络逐层提取图像特征,通过最终的输出特征图来表征物体位置和类别等信息。
YOLOv3算法使用的骨干网络是Darknet53。Darknet53网络的具体结构如下图所示,在ImageNet图像分类任务上取得了很好的成绩。在检测任务中,将图中C0后面的平均池化、全连接层和Softmax去掉,保留从输入到C0部分的网络结构,作为检测模型的基础网络结构,也称为骨干网络。YOLOv3模型会在骨干网络的基础上,再添加检测相关的网络模块。
在这里插入图片描述
下面的程序是Darknet53骨干网络的实现代码。

名词解释:特征图的步幅(stride)
在提取特征的过程中通常会使用步幅大于1的卷积或者池化,导致后面的特征图尺寸越来越小,特征图的步幅等于输入图片尺寸除以特征图尺寸。例如:C0的尺寸是20×20,原图尺寸是640×640,则C0的步幅是

640

20

=

32

\frac{640}{20}=32

20640=32。同理,C1的步幅是16,C2的步幅是8。

##基于paddlepaddle 
import paddle
import paddle.nn.functional as F
import numpy as np

class ConvBNLayer(paddle.nn.Layer):
    def __init__(self, ch_in, ch_out, 
                 kernel_size=3, stride=1, groups=1,
                 padding=0, act="leaky"):
        super(ConvBNLayer, self).__init__()
    
        self.conv = paddle.nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(0., 0.02)),
            bias_attr=False)
    
        self.batch_norm = paddle.nn.BatchNorm2D(
            num_features=ch_out,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(0., 0.02),
                regularizer=paddle.regularizer.L2Decay(0.)),
            bias_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0),
                regularizer=paddle.regularizer.L2Decay(0.)))
        self.act = act

        
    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.batch_norm(out)
        if self.act == 'leaky':
            out = F.leaky_relu(x=out, negative_slope=0.1)
        return out
    
class DownSample(paddle.nn.Layer):
    # 下采样,图片尺寸减半,具体实现方式是使用stirde=2的卷积
    def __init__(self,
                 ch_in,
                 ch_out,
                 kernel_size=3,
                 stride=2,
                 padding=1):

        super(DownSample, self).__init__()

        self.conv_bn_layer = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding)
        self.ch_out = ch_out
    def forward(self, inputs):
        out = self.conv_bn_layer(inputs)
        return out

class BasicBlock(paddle.nn.Layer):
    """
    基本残差块的定义,输入x经过两层卷积,然后接第二层卷积的输出和输入x相加
    """
    def __init__(self, ch_in, ch_out):
        super(BasicBlock, self).__init__()

        self.conv1 = ConvBNLayer(
            ch_in=ch_in,
            ch_out=ch_out,
            kernel_size=1,
            stride=1,
            padding=0
            )
        self.conv2 = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out*2,
            kernel_size=3,
            stride=1,
            padding=1
            )
    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        conv2 = self.conv2(conv1)
        out = paddle.add(x=inputs, y=conv2)
        return out

     
class LayerWarp(paddle.nn.Layer):
    """
    添加多层残差块,组成Darknet53网络的一个层级
    """
    def __init__(self, ch_in, ch_out, count, is_test=True):
        super(LayerWarp,self).__init__()

        self.basicblock0 = BasicBlock(ch_in,
            ch_out)
        self.res_out_list = []
        for i in range(1, count):
            res_out = self.add_sublayer("basic_block_%d" % (i), # 使用add_sublayer添加子层
                BasicBlock(ch_out*2,
                    ch_out))
            self.res_out_list.append(res_out)

    def forward(self,inputs):
        y = self.basicblock0(inputs)
        for basic_block_i in self.res_out_list:
            y = basic_block_i(y)
        return y

# DarkNet 每组残差块的个数,来自DarkNet的网络结构图
DarkNet_cfg = {53: ([1, 2, 8, 8, 4])}

class DarkNet53_conv_body(paddle.nn.Layer):
    def __init__(self):
        super(DarkNet53_conv_body, self).__init__()
        self.stages = DarkNet_cfg[53]
        self.stages = self.stages[0:5]

        # 第一层卷积
        self.conv0 = ConvBNLayer(
            ch_in=3,
            ch_out=32,
            kernel_size=3,
            stride=1,
            padding=1)

        # 下采样,使用stride=2的卷积来实现
        self.downsample0 = DownSample(
            ch_in=32,
            ch_out=32 * 2)

        # 添加各个层级的实现
        self.darknet53_conv_block_list = []
        self.downsample_list = []
        for i, stage in enumerate(self.stages):
            conv_block = self.add_sublayer(
                "stage_%d" % (i),
                LayerWarp(32*(2**(i+1)),
                32*(2**i),
                stage))
            self.darknet53_conv_block_list.append(conv_block)
        # 两个层级之间使用DownSample将尺寸减半
        for i in range(len(self.stages) - 1):
            downsample = self.add_sublayer(
                "stage_%d_downsample" % i,
                DownSample(ch_in=32*(2**(i+1)),
                    ch_out=32*(2**(i+2))))
            self.downsample_list.append(downsample)

    def forward(self,inputs):
        out = self.conv0(inputs)
        #print("conv1:",out.numpy())
        out = self.downsample0(out)
        #print("dy:",out.numpy())
        blocks = []
        for i, conv_block_i in enumerate(self.darknet53_conv_block_list): #依次将各个层级作用在输入上面
            out = conv_block_i(out)
            blocks.append(out)
            if i < len(self.stages) - 1:
                out = self.downsample_list[i](out)
        return blocks[-1:-4:-1] # 将C0, C1, C2作为返回值

torch实现

class BN_Conv2d_Leaky(nn.Module):
    """
    BN_CONV_LeakyRELU
    """

    def __init__(self, in_channels: object, out_channels: object, kernel_size: object, stride: object, padding: object,
                 dilation=1, groups=1, bias=False) -> object:
        super(BN_Conv2d_Leaky, self).__init__()
        self.seq = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
                      padding=padding, dilation=dilation, groups=groups, bias=bias),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        return F.leaky_relu(self.seq(x))


class Dark_block(nn.Module):
    """block for darknet"""
    def __init__(self, channels, is_se=False, inner_channels=None):
        super(Dark_block, self).__init__()
        self.is_se = is_se
        if inner_channels is None:
            inner_channels = channels // 2
        self.conv1 = BN_Conv2d_Leaky(channels, inner_channels, 1, 1, 0)
        self.conv2 = nn.Conv2d(inner_channels, channels, 3, 1, 1)
        self.bn = nn.BatchNorm2d(channels)
        if self.is_se:
            self.se = SE(channels, 16)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.bn(out)
        if self.is_se:
            coefficient = self.se(out)
            out *= coefficient
        out += x
        return F.leaky_relu(out)
class DarkNet(nn.Module):

    def __init__(self, layers: object, num_classes, is_se=False) -> object:
        super(DarkNet, self).__init__()
        self.is_se = is_se
        filters = [64, 128, 256, 512, 1024]

        self.conv1 = BN_Conv2d(3, 32, 3, 1, 1)
        self.redu1 = BN_Conv2d(32, 64, 3, 2, 1)
        self.conv2 = self.__make_layers(filters[0], layers[0])
        self.redu2 = BN_Conv2d(filters[0], filters[1], 3, 2, 1)
        self.conv3 = self.__make_layers(filters[1], layers[1])
        self.redu3 = BN_Conv2d(filters[1], filters[2], 3, 2, 1)
        self.conv4 = self.__make_layers(filters[2], layers[2])
        self.redu4 = BN_Conv2d(filters[2], filters[3], 3, 2, 1)
        self.conv5 = self.__make_layers(filters[3], layers[3])
        self.redu5 = BN_Conv2d(filters[3], filters[4], 3, 2, 1)
        self.conv6 = self.__make_layers(filters[4], layers[4])
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(filters[4], num_classes)

    def __make_layers(self, num_filter, num_layers):
        layers = []
        for _ in range(num_layers):
            layers.append(Dark_block(num_filter, self.is_se))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.redu1(out)
        out = self.conv2(out)
        out = self.redu2(out)
        out = self.conv3(out)
        out = self.redu3(out)
        out = self.conv4(out)
        out = self.redu4(out)
        out = self.conv5(out)
        out = self.redu5(out)
        out = self.conv6(out)
        out = self.global_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return F.softmax(out)


def darknet_53(num_classes=1000):
    return DarkNet([1, 2, 8, 8, 4], num_classes)

版权声明:本文为CSDN博主「Wenweno0o」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Wenweno0o/article/details/121900181

Wenweno0o

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

制作YOLOv5数据集

1 使用labelImg标注数据集 labelImg是一个可视化的图像标定工具。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。可以标注两种格式

FPN 特征金字塔 理解

Feature Pyramid Networks 对于Faster Rcnn使用FPN,cocoAP提升2.3个点,pascalAP提升3.8个点 1*1的conv,调整通道数,原论文中