目标检测yolo, voc, coco的BBox格式转换

yolo, voc, coco bbox格式互转函数

yolo: [xmid, ymid, w, h],归一化到0-1

voc: [x1, y1, x2, y2]

coco: [xmin, ymin, w, h]

 

def voc2yolo(bboxes, image_height=720, image_width=1280):
    """
    voc  => [x1, y1, x2, y2]
    yolo => [xmid, ymid, w, h] (normalized)
    """
    
    bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int
    
    bboxes[..., [0, 2]] = bboxes[..., [0, 2]]/ image_width
    bboxes[..., [1, 3]] = bboxes[..., [1, 3]]/ image_height
    
    w = bboxes[..., 2] - bboxes[..., 0]
    h = bboxes[..., 3] - bboxes[..., 1]
    
    bboxes[..., 0] = bboxes[..., 0] + w/2
    bboxes[..., 1] = bboxes[..., 1] + h/2
    bboxes[..., 2] = w
    bboxes[..., 3] = h
    
    return bboxes

def yolo2voc(bboxes, image_height=720, image_width=1280):
    """
    yolo => [xmid, ymid, w, h] (normalized)
    voc  => [x1, y1, x2, y2]
    
    """ 
    bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int
    
    bboxes[..., [0, 2]] = bboxes[..., [0, 2]]* image_width
    bboxes[..., [1, 3]] = bboxes[..., [1, 3]]* image_height
    
    bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2
    bboxes[..., [2, 3]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]]
    
    return bboxes

def coco2yolo(bboxes, image_height=720, image_width=1280):
    """
    coco => [xmin, ymin, w, h]
    yolo => [xmid, ymid, w, h] (normalized)
    """
    
    bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int
    
    # normolizinig
    bboxes[..., [0, 2]]= bboxes[..., [0, 2]]/ image_width
    bboxes[..., [1, 3]]= bboxes[..., [1, 3]]/ image_height
    
    # converstion (xmin, ymin) => (xmid, ymid)
    bboxes[..., [0, 1]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]]/2
    
    return bboxes

def yolo2coco(bboxes, image_height=720, image_width=1280):
    """
    yolo => [xmid, ymid, w, h] (normalized)
    coco => [xmin, ymin, w, h]
    
    """ 
    bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int
    
    # denormalizing
    bboxes[..., [0, 2]]= bboxes[..., [0, 2]]* image_width
    bboxes[..., [1, 3]]= bboxes[..., [1, 3]]* image_height
    
    # converstion (xmid, ymid) => (xmin, ymin) 
    bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2
    
    return bboxes

def voc2coco(bboxes, image_height=720, image_width=1280):
    bboxes  = voc2yolo(bboxes, image_height, image_width)
    bboxes  = yolo2coco(bboxes, image_height, image_width)
    return bboxes

版权声明:本文为CSDN博主「fwu11」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42552135/article/details/122533582

fwu11

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

CVPR2021: Sparse R-CNN新的目标检测模型

今天我们将讨论由四个机构的研究人员提出的一种方法,其中一个是字节跳动人工智能实验室。他们为我们提供了一种新的方法,称为稀疏R-CNN(不要与 Sparse R-CNN 混淆,后者在 3D 计算机视觉任务

实战深度学习目标检测:RCNN (1)

深度学习目标检测:RCNN 什么是目标检测?目标检测主要是明确从图中看到了什么物体?他们在什么位置。传统的目标检测方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域&#xff0c