目标检测+语义分割=实例分割

目标检测:给你一张只有一条狗的图片,输入训练好的模型中(假设模型包含了所有类型的狗),不管狗出现在图片中的哪个位置,它都能被检测为狗;给你一张有两条狗的图片,输入网络,会生成两个bbox,均被检测为狗,无法进行个体的区分。

语义分割:对所有像素进行分类,图片中只要出现狗,都会被分为一类,同样无法进行个体的区分。

实例分割:在所有不同类的狗的像素都被分类为狗的基础上,对不同类的狗进行目标定位,再给上狗1和狗2的标签,这就是实例分割。

版权声明:本文为CSDN博主「剑走偏锋777」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/MUYEFENX/article/details/121872114

剑走偏锋777

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【目标检测】YOLO、SSD、CornerNet原理介绍

目标检测是计算机视觉中比较简单的任务,用来在一张图篇中找到某些特定的物体,目标检测不仅要求我们识别这些物体的种类,同时要求我们标出这些物体的位置。其中类别是离散数据,位置是连续数据。 目

目标检测篇之---YOLO系列

YOLO系列 首先先说一下目标检测之one-stage和two-stage网络是什么意思?有什么区别? 刚开始看目标检测的时候总能看见单阶段(one-stage)和两阶段(

分享 | 物体检测和数据集

因为最近学习任务比较紧(但也不妨碍元旦摆烂三天),所以中间有几个实战Kaggle比赛就跳过了,等以后有时间再回头来看看。物体检测和数据集这一节花了有一天的时间,一直有一个bug困扰,后来改了代码把box