目标检测之单阶段和两阶段检测算法的对比

双阶段精度高但速度慢,单精度速度快但精度稍逊。

双阶段目标检测器采用了两段结构采样来处理类别不均衡的问题,rpn使正负样本更加均衡
使用了两阶段级联的方式来拟合bbox,先粗回归,再精调。

One stage detector 的一个通病就是既要做定位又要做classification。最后几层1x1 conv layer 的loss 混在一起,并没有什么专门做detection 或者专门做bbox regression的参数,那每个参数的学习难度就大一点。

Two stage detector 的第一个stage相当于先拿一个one stage detector 来做一次前景后景的classification + detection。这个任务比 one stage detector 的直接上手N class classification + detection 要简单很多。有了前景后景,就可以选择性的挑选样本使得正负样本更加均衡,然后拿着一些参数重点训练classification。训练classification的难度也比直接做混合的classification 和 regression 简单很多。

其实就是把一个复杂的大问题拆分成更为简单的小问题。各个参数有专攻,Two Stage Detector 在这个方面是有优势的。

one stage detector 里如果用了 focal loss 和 separate detection/classification head 那效果跟 two stage detector 应该是一样的。

版权声明:本文为CSDN博主「专注于计算机视觉的AndyJiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/andyjkt/article/details/108630603

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

U-Net训练自己的数据集

1:数据准备
我说使用的数据是labelme制作的。json文件保存的是对应图片中所有目标的边界点坐标。
但是UNet训练却使用的是原始图像及其对应的二值化掩膜。就像下面这样: 所以需要把labelme输出的

Yolov5训练自制数据集

一、准备
1.项目链接
https://github.com/ultralytics/yolov5
2.制作数据集
将标注好的图片放到data/images/train 和data/images/valid 文件夹下,将.

三维目标检测新SOTA---ADFDetV2论文解读

问题 本文提出了一种单阶段的三维目标检测算法,并在文中分析了二阶段三维目标检测算法的不必要性。其所提算法在waymo实时目标检测竞赛中取得了第一的成绩。其性能超过了所有单阶段和多阶段的目标检测算法。
作者首先分析了二阶段目标检测