目标检测之单阶段和两阶段检测算法的对比

双阶段精度高但速度慢,单精度速度快但精度稍逊。

双阶段目标检测器采用了两段结构采样来处理类别不均衡的问题,rpn使正负样本更加均衡
使用了两阶段级联的方式来拟合bbox,先粗回归,再精调。

One stage detector 的一个通病就是既要做定位又要做classification。最后几层1x1 conv layer 的loss 混在一起,并没有什么专门做detection 或者专门做bbox regression的参数,那每个参数的学习难度就大一点。

Two stage detector 的第一个stage相当于先拿一个one stage detector 来做一次前景后景的classification + detection。这个任务比 one stage detector 的直接上手N class classification + detection 要简单很多。有了前景后景,就可以选择性的挑选样本使得正负样本更加均衡,然后拿着一些参数重点训练classification。训练classification的难度也比直接做混合的classification 和 regression 简单很多。

其实就是把一个复杂的大问题拆分成更为简单的小问题。各个参数有专攻,Two Stage Detector 在这个方面是有优势的。

one stage detector 里如果用了 focal loss 和 separate detection/classification head 那效果跟 two stage detector 应该是一样的。

版权声明:本文为CSDN博主「专注于计算机视觉的AndyJiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/andyjkt/article/details/108630603

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me

目标检测入坑指南3:VGGNet神经网络

学了蛮久的目标检测了,但是有好多细节总是忘或者模棱两可,感觉有必要写博客记录一下学习笔记和一些心得,既可以加深印象又可以方便他人。博客内容集成自各大学习资源,所以图片也就不加水印了&#xf