tracker = Tracker(
distance_function=euclidean_distance,
distance_threshold=49,
hit_inertia_min=2,
hit_inertia_max=6,
initialization_delay=2,
)
for idx, img in enumerate(imgs):
detects = []
bboxes, confs = predict(model, img, size=IMG_SIZE, augment=AUGMENT) #目标检测代码
for bbox, score in zip(bboxes, confs):
x1, y1, x2, y2 = bbox
detects.append([x1, y1, x2, y2, score])
tracked_objects = tracker.update(detections=to_norfair(detects, idx))
for tobj in tracked_objects:
bbox_width, bbox_height, last_detected_frame_id = tobj.last_detection.data
if last_detected_frame_id == idx: # Skip objects that were detected on current frame
continue
# Add objects that have no detections on current frame to predictions
xc, yc = tobj.estimate[0]
x_min, y_min = int(round(xc - bbox_width / 2)), int(round(yc - bbox_height / 2)) #tracking结果
score = tobj.last_detection.scores[0]
版权声明:本文为CSDN博主「mathlmj」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/mathlxj/article/details/122941492
暂无评论