由于工作需求,需要实现对物体的识别与追踪,那么单纯依靠yolo+deepsort是不够的,所以还需要借助zed双目相机获得深度信息。
主要实施步骤:
1.配置合适的cuda
2.下载对应ZED SDK
3.安装合适的库
4.安装ZED-OPENCV-API
5.使用
具体的信息见stereolab-github
详细代码如下:
import numpy as np import cv2 import os import time from collections import deque import pyzed.sl as sl from ctypes import * import math import random import statistics import sys import getopt from random import randint #参数设置 init_params = sl.InitParameters() init_params.depth_mode = sl.DEPTH_MODE.PERFORMANCE # Use PERFORMANCE depth mode init_params.coordinate_units = sl.UNIT.METER # Use meter units (for depth measurements) init_params.camera_resolution = sl.RESOLUTION.HD720 cam = sl.Camera() #capture = cv2.VideoCapture(1) status = cam.open(init_params) step_camera_settings = 1 runtime_parameters = sl.RuntimeParameters() runtime_parameters = sl.RuntimeParameters() runtime_parameters.sensing_mode = sl.SENSING_MODE.STANDARD # Use STANDARD sensing mode # Setting the depth confidence parameters runtime_parameters.confidence_threshold = 100 runtime_parameters.textureness_confidence_threshold = 100 mat1 = sl.Mat() mat2 = sl.Mat() image = sl.Mat() depth = sl.Mat() point_cloud = sl.Mat() #yolo weightsPath = "./yolov3.weights" configPath = "./cfg/yolov3.cfg" labelsPath = "./data/coco.names" mybuffer = 50 pts = deque(maxlen=mybuffer) LABELS = open(labelsPath).read().strip().split("\n") # 物体类别 COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8") # 颜色 net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) fps = 0.0 videowrite = cv2.VideoWriter('./output/MySaveVideo-' + '.avi', cv2.VideoWriter_fourcc('I', '4', '2', '0'), 30,(1280,720)) mirror_ref = sl.Transform() mirror_ref.set_translation(sl.Translation(2.75, 4.0, 0)) tr_np = mirror_ref.m while True: t1 = time.time() boxes = [] confidences = [] classIDs = [] err = cam.grab(runtime_parameters) cam.retrieve_image(mat1, sl.VIEW.LEFT) ret=True frame = mat1.get_data() frame = frame[:, :, :3] #双目相机获得的图片是4通道,且最后一个通道默认为255,因此需要作切片处理 #print(frame.shape) #cam.retrieve_image(mat2, sl.VIEW.RIGHT) #cv2.imshow("ZED-R", mat2.get_data()) #cv2.imshow("ZED-L", mat1.get_data()) (H, W) = frame.shape[:2] ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # 从输入图像构造一个blob,然后通过加载的模型,给我们提供边界框和相关概率 blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) layerOutputs = net.forward(ln) cam.retrieve_image(mat1, sl.VIEW.LEFT) cam.retrieve_measure(depth, sl.MEASURE.DEPTH) cam.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA) for output in layerOutputs: # 对每个检测进行循环 for detection in output: scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # 过滤掉那些置信度较小的检测结果 if confidence > 0.5: # 框后接框的宽度和高度 box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") # 边框的左上角 xx = int(centerX - (width / 2)) yy = int(centerY - (height / 2)) boxes.append([xx, yy, int(width), int(height)]) confidences.append(float(confidence)) classIDs.append(classID) idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.2, 0.3) if len(idxs) > 0: for i in idxs.flatten(): (xx, yy) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) center = (xx + int(w / 2), yy + int(h / 2)) pts.appendleft(center) err, point_cloud_value = point_cloud.get_value(centerX, centerY) distance = math.sqrt(point_cloud_value[0] * point_cloud_value[0] + point_cloud_value[1] * point_cloud_value[1] + point_cloud_value[2] * point_cloud_value[2]) point_cloud_np = point_cloud.get_data() point_cloud_np.dot(tr_np) # 在原图上绘制边框和类别 color = [int(c) for c in COLORS[classIDs[i]]] frame=cv2.rectangle(frame, (xx, yy), (xx + w, yy + h), color, 2) text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) cv2.putText(frame, 'distance::'+str(round(distance,2)), (xx, yy -20 ), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) cv2.putText(frame, text, (xx, yy - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) frame=cv2.putText(frame, "FPS: %f" % (fps), (int(20), int(40)), 0, 5e-3 * 200, (0, 255, 0), 3) #cv2.circle(frame, (xx + (int(w / 2)), yy + int(h / 2)), 1, (0, 0, 225), 4) for i in range(1, len(pts)): if pts[i - 1] is None or pts[i] is None: continue # 计算所画小线段的粗细 thickness = 2 # 画出小线段 #cv2.arrowedLine(frame, pts[i], pts[i - 1], (0, 0, 255), thickness,tipLength = 0.5) videowrite.write(frame) cv2.imshow("Image", frame) fps = ( fps + (1./(time.time()-t1)) ) / 2 #else: # print("Can't estimate distance at this position.") # print("Your camera is probably too close to the scene, please move it backwards.\n") key = cv2.waitKey(1) if key == ord("q"): break # cv2.waitKey(5)
版权声明:本文为CSDN博主「Caesar,Z」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/a2812586/article/details/117422957
暂无评论