PointRend Architecture 之一

文章目录[隐藏]

PointRend Architecture 之一

Mask R-CNN Backbone:(ResNet50+FPN)

GeneralizedRCNN(
  (backbone): FPN(
    (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (top_block): LastLevelMaxPool()
    (bottom_up): ResNet(
      (stem): BasicStem(
        (conv1): Conv2d(
          3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
      )
      (res2): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv1): Conv2d(
            64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
      )
      (res3): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv1): Conv2d(
            256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (3): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
      )
      (res4): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
          (conv1): Conv2d(
            512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (3): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (4): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (5): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
      )
      (res5): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
          (conv1): Conv2d(
            1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
      )
    )
  )

(2)RPN + ROI Align + box head + cls head

(proposal_generator): RPN(
    (rpn_head): StandardRPNHead(
      (conv): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
      (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
    )
    (anchor_generator): DefaultAnchorGenerator(
      (cell_anchors): BufferList()
    )
  )
  (roi_heads): StandardROIHeads(
    (box_pooler): ROIPooler(
      (level_poolers): ModuleList(
        (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
        (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
        (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
        (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
      )
    )
    (box_head): FastRCNNConvFCHead(
      (flatten): Flatten(start_dim=1, end_dim=-1)
      (fc1): Linear(in_features=12544, out_features=1024, bias=True)
      (fc_relu1): ReLU()
      (fc2): Linear(in_features=1024, out_features=1024, bias=True)
      (fc_relu2): ReLU()
    )
    (box_predictor): FastRCNNOutputLayers(
      (cls_score): Linear(in_features=1024, out_features=81, bias=True)
      (bbox_pred): Linear(in_features=1024, out_features=320, bias=True)
    )

PointRend

    (mask_head): PointRendMaskHead(
      (point_head): StandardPointHead(
        (fc1): Conv1d(336, 256, kernel_size=(1,), stride=(1,))
        (fc2): Conv1d(336, 256, kernel_size=(1,), stride=(1,))
        (fc3): Conv1d(336, 256, kernel_size=(1,), stride=(1,))
        (predictor): Conv1d(336, 80, kernel_size=(1,), stride=(1,))
      )
      (coarse_head): ConvFCHead(
        (reduce_spatial_dim_conv): Conv2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
        (fc1): Linear(in_features=12544, out_features=1024, bias=True)   7*7*256
        (fc2): Linear(in_features=1024, out_features=1024, bias=True)
        (prediction): Linear(in_features=1024, out_features=3920, bias=True) 7*7*80
      )
    )

版权声明:本文为CSDN博主「qq_44700408」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_44700408/article/details/122148656

qq_44700408

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

FPN 特征金字塔 理解

Feature Pyramid Networks 对于Faster Rcnn使用FPN,cocoAP提升2.3个点,pascalAP提升3.8个点 1*1的conv,调整通道数,原论文中

非极大值抑制 (Non-Maximum Suppression, NMS)

NMS 基本过程 当前的物体检测算法为了保证召回率,对于同一个真实物体往往会有多于 1 个的候选框输出。由于多余的候选框会影响检测精度,因此需要利用 NMS 过滤掉重叠的候选框,得到最佳的预测输出