SSD-Pytorch训练自己的VOC数据集&遇到的问题及解决办法

训练

去GitHub上下载SSD源码
新建一个VOCdevkit文件夹,放入VOC2007数据集
在这里插入图片描述
make_txt.py 生成四个文件 在 ImageSets/Main

import os
import random

trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = './Annotations/'
txtsavepath = './ImageSets/Main/'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open(txtsavepath + '/trainval.txt', 'w')
ftest = open(txtsavepath + '/test.txt', 'w')
ftrain = open(txtsavepath + '/train.txt', 'w')
fval = open(txtsavepath + '/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

data/init.py

注释 第3行from .coco import COCODetection, COCOAnnotationTransform, COCO_CLASSES, COCO_ROOT, get_label_map

data/config.py

第15行的 num_classes改成自己设定的类别数+1
设置max_iter最大迭代数

data/voc0712.py

第20行的VOC_CLASSES =改成自己的类别名;
第93行改为 image_sets=[('2007', 'trainval')]

layers/modules/multibox_loss.py

第97行的loss_c[pos] = 0前面加上一句loss_c = loss_c.view(num, -1)

ssd.py

把所有的num_classes的数量(第32、198行)都改为类别数+1

train.py

parser batch_sizelearning-rate根据自己电脑情况修改(batchsize=16);
basenet 预训练模型,start_iter迭代起始点,save_folder模型保存地址
搜索这里面的data[0],全部替换为item()
第84、85行注释掉;

# if args.dataset_root == COCO_ROOT: 
# parser.error('Must specify dataset if specifying dataset_root')

第198行iteration % 5000 == 0,意味着每5000次保存一次模型,可改为200。后两行可改保存的模型名。

可以在第195行创建txt记录loss值:

with open('loss.txt', 'a') as f:
    f.write(str(loss.item()) + '\n')

165行的images, targets = next(batch_iterator)改成:

try:
    images, targets = next(batch_iterator)
except StopIteration:
    batch_iterator = iter(data_loader)
    images, targets = next(batch_iterator)

预训练文件vgg16_reducedfc.pth

开始训练时需要一个预训练文件 vgg16_reducedfc.pth

百度云链接:提取码:xg4c

下载之后放在SSD项目下新建的weights文件夹下,然后就可以进行训练了。
注:训练中途遇到 loss=nan 的现象,将train.py中,parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,中的 default=1e-3改为default=1e-4。*直到loss降低到1左右时即可 *

eval.py

trained_model评估的模型路径,save_folder 评估保存路径

demo.py

新建test_image,在文件夹中放置几张待测图片(四处修改 20220106更新)

import os
import sys
import torch
from torch.autograd import Variable
import numpy as np
import cv2
from ssd import build_ssd
from data import VOC_CLASSES as labels
from matplotlib import pyplot as plt

# ------ 初始化 libiomp5md.dll 报错修改 ------
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# -----------------------------------------

module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path:
    sys.path.append(module_path)

if torch.cuda.is_available():
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

net = build_ssd('test', 300, 5)    # 第一处修改:类别+1
# 将预训练的权重加载到数据集上
net.load_weights('weights/ssd300_VOC_1995.pth')  # 第二处修改:使用自己训练好的文件

# 加载多张图像
imgs = 'test_image/'# 第三处修改:改成你自己的文件夹
img_list = os.listdir(imgs)
for img in img_list:
    # 对输入图像进行预处理
    current_img = imgs + img
    image = cv2.imread(current_img)
    rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    x = cv2.resize(image, (300, 300)).astype(np.float32)
    x -= (104.0, 117.0, 123.0)
    x = x.astype(np.float32)
    x = x[:, :, ::-1].copy()
    x = torch.from_numpy(x).permute(2, 0, 1)

    # 把图片设为变量
    xx = Variable(x.unsqueeze(0))
    if torch.cuda.is_available():
        xx = xx.cuda()
    y = net(xx)

    # 解析 查看结果

    top_k = 10

    plt.figure(figsize=(6, 6))
    colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
    currentAxis = plt.gca()

    detections = y.data
    scale = torch.Tensor(rgb_image.shape[1::-1]).repeat(2)
    for i in range(detections.size(1)):
        j = 0
        while detections[0, i, j, 0] >= 0.6:     # 第四处修改:置信度修改
            score = detections[0, i, j, 0]
            label_name = labels[i-1]
            display_txt = '%s: %.2f'%(label_name, score)
            print(display_txt)
            pt = (detections[0,i,j,1:]*scale).cpu().numpy()
            coords = (pt[0], pt[1]), pt[2]-pt[0]+1, pt[3]-pt[1]+1
            color = colors[i]
            currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2))
            currentAxis.text(pt[0], pt[1], display_txt, bbox={'facecolor':color, 'alpha':0.5})
            j += 1
    plt.imshow(rgb_image)
    plt.show()


demo/live.py

摄像头识别 (没试)
第10行用…/找到上一级目录

parser.add_argument('--weights', default='../weights/xxxxxx.pth',

第78行 类别+1

遇到的问题

报错顺序不记得了,下面是遇到的大部分错误

train.py

TypeError: unsupported operand type(s) for /=: ‘Tensor’ and ‘builtin_function_or_method’…

loss_l /= N这句错误

因为一些教程里还改了layers/modules/multibox_loss.py程序:
第115行N = num_pos.data.sum()改为

 N = num_pos.data.sum().double 
 loss_l = loss_l.double() 
 loss_c = loss_c.double() 

会出现这个问题.

找不到数据集里的文件夹/文件

VOC数据集名字错了 注意名称 和 大小写

FileNotFoundError: [Errno 2] No such file or directory: ‘C:\Users\Administrator\data/coco/coco_labels.txt’

train.py 第二行如果有from data.coco import COCO_ROOT, COCODetection注释掉

RuntimeError: Legacy autograd function with non-static forward method is deprecated. Please use new-style autograd function with static forward method.

版本问题。 参考
detection.py为(更新 注释部分已翻译)

"""
Copyright (c) 2017 Max deGroot, Ellis Brown
Released under the MIT license
https://github.com/amdegroot/ssd.pytorch
Updated by: Takuya Mouri
"""
import torch
from torch.autograd import Function
from ..box_utils import decode, nms
from data import voc as cfg


class Detect(Function):
    """At test time, Detect is the final layer of SSD.  Decode location preds,
    apply non-maximum suppression to location predictions based on conf
    scores and threshold to a top_k number of output predictions for both
    confidence score and locations.
    """
    # PyTorch1.5.0 support new-style autograd function
    #def __init__(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh):
    #    self.num_classes = num_classes
    #    self.background_label = bkg_label
    #    self.top_k = top_k
    #    # Parameters used in nms.
    #    self.nms_thresh = nms_thresh
    #    if nms_thresh <= 0:
    #        raise ValueError('nms_threshold must be non negative.')
    #    self.conf_thresh = conf_thresh
    #    self.variance = cfg['variance']

    #def forward(self, loc_data, conf_data, prior_data):
    @staticmethod
    def forward(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh, loc_data, conf_data, prior_data):
        self.num_classes = num_classes
        self.background_label = bkg_label
        self.top_k = top_k
        # Parameters used in nms.
        self.nms_thresh = nms_thresh
        if nms_thresh <= 0:
            raise ValueError('nms_threshold must be non negative.')
        self.conf_thresh = conf_thresh
        self.variance = cfg['variance']
    # PyTorch1.5.0 support new-style autograd function
        """
        Args:
            loc_data: (tensor) Loc preds from loc layers
                Shape: [batch,num_priors*4]
            conf_data: (tensor) Shape: Conf preds from conf layers
                Shape: [batch*num_priors,num_classes]
            prior_data: (tensor) Prior boxes and variances from priorbox layers
                Shape: [1,num_priors,4]
        """
        num = loc_data.size(0)  # batch size
        num_priors = prior_data.size(0)
        # [バッチサイズN,クラス数5,トップ200件,確信度+位置]のゼロリストを作成
        # 创建一个 [batch size = N,classes = 5,预测框最大数量 top_k = 200,置信度 + 位置] 的零列表
        output = torch.zeros(num, self.num_classes, self.top_k, 5)
        # 確信度を[バッチサイズN,クラス数,ボックス数]の順番に変更
        # 按照 [batch size N, number of classes, number of box] 的顺序改变置信度
        conf_preds = conf_data.view(num, num_priors,
                                    self.num_classes).transpose(2, 1)

        # Decode predictions into bboxes.
        for i in range(num):
            decoded_boxes = decode(loc_data[i], prior_data, self.variance)
            # For each class, perform nms
            conf_scores = conf_preds[i].clone()

            for cl in range(1, self.num_classes):
                # 確信度の閾値を使ってボックスを削除
                # 使用置信阈值删除框
                c_mask = conf_scores[cl].gt(self.conf_thresh)
                scores = conf_scores[cl][c_mask]
                # handbook
                #if scores.dim() == 0:
                if scores.size(0) == 0:
                # handbook
                    continue
                l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
                # ボックスのデコード処理
                # box 解码过程
                boxes = decoded_boxes[l_mask].view(-1, 4)
                # idx of highest scoring and non-overlapping boxes per class
                # boxesからNMSで重複するボックスを削除
                # 使用 NMS 从 boxes 中删除重复的 box
                ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
                output[i, cl, :count] = \
                    torch.cat((scores[ids[:count]].unsqueeze(1),
                               boxes[ids[:count]]), 1)
        flt = output.contiguous().view(num, -1, 5)
        _, idx = flt[:, :, 0].sort(1, descending=True)
        _, rank = idx.sort(1)
        flt[(rank < self.top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
        return output

ssd.py中99行左右

output = self.detect(

改为

output = self.detect.apply(self.num_classes, 0, 200, 0.01, 0.45,

AttributeError: ‘NoneType’ object has no attribute ‘shape’

change coco.py:
from: img=cv2.imread(osp.join(self.root,path))
to:img=cv2.imread(path)

IndexError: Too many indices for array:Array is 1-dimensional,but 2 were indexed (20220105更新)

annotation也就是xml文件里面有些包含空目标(我的没有也报错了)
参考 网址
出错的xml和jpg修改 或 删掉 (流程结束后需要重新生成VOC的四个txt文件)
新建 check.py
修改rootclasses

import argparse
import sys
import cv2
import os

import os.path          as osp
import numpy            as np

if sys.version_info[0] == 2:
    import xml.etree.cElementTree as ET
else:
    import xml.etree.ElementTree  as ET


parser    = argparse.ArgumentParser(
            description='Single Shot MultiBox Detector Training With Pytorch')
train_set = parser.add_mutually_exclusive_group()

parser.add_argument('--root', default="xxxxxxxxxxxxxxxxxxxxxxxxxxx", help='Dataset root directory path')

args = parser.parse_args()

CLASSES = (  # always index 0
    'fire', 'xxxxxxxxxxxxxxxxxxxxx')

annopath = osp.join('%s', 'Annotations', '%s.{}'.format("xml"))
imgpath  = osp.join('%s', 'JPEGImages',  '%s.{}'.format("jpg"))

def vocChecker(image_id, width, height, keep_difficult = False):
    target   = ET.parse(annopath % image_id).getroot()
    res      = []

    for obj in target.iter('object'):

        difficult = int(obj.find('difficult').text) == 1

        if not keep_difficult and difficult:
            continue

        name = obj.find('name').text.lower().strip()
        bbox = obj.find('bndbox')

        pts    = ['xmin', 'ymin', 'xmax', 'ymax']
        bndbox = []

        for i, pt in enumerate(pts):

            cur_pt = int(bbox.find(pt).text) - 1
            # scale height or width
            cur_pt = float(cur_pt) / width if i % 2 == 0 else float(cur_pt) / height

            bndbox.append(cur_pt)

        print(name)
        label_idx =  dict(zip(CLASSES, range(len(CLASSES))))[name]
        bndbox.append(label_idx)
        res += [bndbox]  # [xmin, ymin, xmax, ymax, label_ind]
        # img_id = target.find('filename').text[:-4]
    print(res)
    try :
        print(np.array(res)[:,4])
        print(np.array(res)[:,:4])
    except IndexError:
        print("\nINDEX ERROR HERE !\n")
        exit(0)
    return res  # [[xmin, ymin, xmax, ymax, label_ind], ... ]

if __name__ == '__main__' :

    i = 0

    for name in sorted(os.listdir(osp.join(args.root,'Annotations'))):
    # as we have only one annotations file per image
        i += 1

        img    = cv2.imread(imgpath  % (args.root,name.split('.')[0]))
        height, width, channels = img.shape
        print("path : {}".format(annopath % (args.root,name.split('.')[0])))
        res = vocChecker((args.root, name.split('.')[0]), height, width)
    print("Total of annotations : {}".format(i))

eval.py

右键运行变成test模式

打开pycharm进入了test模式,具体表现为用“Run ‘py.test xxx.py’”
左上角File-settings-python integrated tools里面修改,选择unittest修改后记得apply

开始运行后到某一个图片突然出错

改VOC2007的main里边的 test.txt 删掉错误的那一行

eval运行到最后 FileNotFoundError: [Errno 2] No such file or directory: ‘test.txt’

这只是一个符号问题;os.path.join 不接受在原始实现中加入带有括号“{😒}.txt”的路径。它会忽略所有路径~/VOC2007/ImageSets/Main/test.txt 并简单地假设路径是:currentpath/test.txt

修复指定 imgsetpath 的行,如下所示:

imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets', 'Main', '%s.txt')

在函数 do_python_eval 中将

filename, annopath, imgsetpath.format(set_type), cls, cachedir,

改为

filename, annopath, imgsetpath % set_type, cls, cachedir,

我不管 未来 会怎么样

但我每天都想见到你

版权声明:本文为CSDN博主「国服最强貂蝉」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zrg_hzr_1/article/details/121661026

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolov5 检测一类物体

使用yolov5官方框架检测一类物体 yolov5的官方框架可较好的对共80种类进行目标检测,本文介绍一种直接修改源代码来只检测一类物体的方法以及通用的方法(利用数据集训练自己的权重)。 一、直接修

Yolo(3)(项目)Yolo v3 目标检测(85分类)

目录 基础理论 一、 读取文件 二、神经网络初始化 1、搭建神经网络 2、GPU加速 三、打开摄像头、按帧读取图像 四、向神经网络输入 五、获取神经网络输出 1、获取各层名称 2、获取输出层名称 3、获取输出层图像&#xff