文章目录[隐藏]
Ultra-Fast-Lane-Detection
code: https://github.com/cfzd/Ultra-Fast-Lane-Detection
作者博客: https://zhuanlan.zhihu.com/p/157530787
参考博客: https://www.cnblogs.com/ziyuzhu-edward/p/13639494.html
-
our formulation is proposed to
select locations of lanes at predefined rows of the image using global features
instead of segmenting every pixel of lanes based on a local receptive field,
which significantly reduces the computational cost. -
we present a structural loss which explicitly
utilizes prior information of lanes. -
准确率速度都很高,300+fps
相关工作
VPGNet, SCNN, Selfattention distillation (SAD)
Method
- 将车道线检测定义为寻找车道线在图像中某些行的位置的集合,即基于行方向上的位置选择、分类(row-based classification)
- 就是giridding一下变成大方块这样
- 每一行是一个anchor
- 我们可以发现向量的长度是w+1而不是w, 因为有可能这一行里所有的grid都不属于第i条车道, 这个时候需要多出一个grid来代表不存在, 此时向量前w个grid都是0, 第w+1个元素为1
- Lane structural loss
环境准备
-
Clone the project
git clone https://github.com/cfzd/Ultra-Fast-Lane-Detection cd Ultra-Fast-Lane-Detection
-
Create a conda virtual environment and activate it
conda create -n lane-det python=3.7 -y conda activate lane-det
-
Install dependencies
# If you dont have pytorch conda install pytorch torchvision cudatoolkit=10.1 -c pytorch pip install -r requirements.txt
数据集存放
$TUSIMPLEROOT
|──clips
|──label_data_0313.json
|──label_data_0531.json
|──label_data_0601.json
|──test_tasks_0627.json
|──test_label.json
|──readme.md
convert_tusimple
对于Tusimple,没有提供分割注释,因此我们需要从json注释生成分割。
python scripts/convert_tusimple.py --root /home/stone/disk/Lane_detection/Ultra-Fast-Lane-Detection-master/TuSimple
# this will generate segmentations and two list files: train_gt.txt and test.txt
测试
python test.py configs/tusimple.py --test_model ./tusimple_18.pth --test_work_dir ./tmp
可视化
python demo.py configs/tusimple.py --test_model path_to_tusimple_18.pth
大部分图片的预测效果还可以,但是中间和右图的预测效果就特别差,感觉这两张图的车道特征还挺明显的,偏移比较大
训练
python train.py configs/tusimple.py
版权声明:本文为CSDN博主「Flying Stone」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42840360/article/details/116047264
暂无评论