【无标题】

YOLOv4 介绍及其模型优化方法

一、YOLOv4 介绍

2020 年 4 月,YOLOv4 在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在 YOLO 系列的原作者 Joseph Redmon 宣布退出 CV 领域后,表明官方不再更新 YOLOv3。但在过去的两年中,AlexeyAB 继承了 YOLO 系列的思想和理念,在 YOLOv3 的基础上不断进行改进和开发,于今年 4 月发布 YOLOv4,并得到了原作者 Joseph Redmon 的承认。YOLOv4 可以使用传统的 GPU 进行训练和测试,并能够获得实时的,高精度的检测结果。与其他最先进的目标检测器的比较的结果如图1.1所示,YOLOv4 在与 EfficientDet 性能相当的情况下,推理速度比其快两倍。相比 YOLOv3 的 AP 和 FPS 分别提高了 10% 和 12%。

图1.1 检测结果对比

YOLOv4 贡献可总结如下:

  • 提出了一种实时、高精度的目标检测模型。它可以使用1080 Ti或2080 Ti 等通用GPU来训练快速和准确的目标检测器;

  • 在检测器训练阶段,验证了一些最先进的 Bag-of-Freebies 和 Bag-of-Specials 方法的效果;

  • 对SOTA方法进行改进,使其效率更高,更适合单GPU训练,包括 CBN,PAN 和 SAM等。

论文地址:YOLOv4: Optimal Speed and Accurac

版权声明:本文为CSDN博主「Mrrunsen」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Mrrunsen/article/details/122871009

Mrrunsen

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

读取xml文件中的信息

VOC格式标签:图片的实际宽和高,标注框的左上角和右下角坐标YOLO格式标签:标注框的中心坐标(归一化的),标注框的宽和高(归一化的&#xff09

【目标检测】YOLO、SSD、CornerNet原理介绍

目标检测是计算机视觉中比较简单的任务,用来在一张图篇中找到某些特定的物体,目标检测不仅要求我们识别这些物体的种类,同时要求我们标出这些物体的位置。其中类别是离散数据,位置是连续数据。 目

目标检测篇之---YOLO系列

YOLO系列 首先先说一下目标检测之one-stage和two-stage网络是什么意思?有什么区别? 刚开始看目标检测的时候总能看见单阶段(one-stage)和两阶段(