【无标题】darknet GPU版编译配置过程及主要问题记录

本文主要概述GPU版darknet源码工程的编译配置相关问题。

1.cuda和cudnn的安装配置

参考以下博客CUDA、CUDNN在windows下的安装及配置_IT菜鸟-CSDN博客_cudnn配置

2.darknet下载

GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

3.darknet编译配置

1)修改工程属性(darknet.vcxproj)中对应的cuda版本为当前安装的版本号,

 

2)打开工程darkne.sln ,确保opencv安装OK,环境变量配置OK,修改工程属性中与opencv include和lib相关的绝对路径为本机opencv 对应路径

3)cuda 配置

4.主要 编译报错和修改方法

1)报错1

解决方法:编辑darknet.vcxproj文件,然后找到158行左右,具体行数可能有出入,改为如下:

https://sup.51qudong.com/wp-content/uploads/csmbjc/20191017203125258.png

下图也改,大概在 107 行左右:

https://sup.51qudong.com/wp-content/uploads/csmbjc/20191017203724503.png

补充说明:该值的修改与cuda版本有关,本人cuda版本为10.0,其他版本的先尝试52,如不行请查找所用版本对应的配置。

2)报错2

修改如下:

本次记录了编译配置过程耗时较长的主要问题,最终编译成功,如有其它问题可留言探讨。

版权声明:本文为CSDN博主「angeldream999」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/angeldream999/article/details/122177202

angeldream999

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【目标检测】锚框

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 【个人学习笔记记录,如有错误,请指正!】 一、锚框 理解锚框之前,我们需

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me