[系列文章]Nvidia Jetson TX2使用yolov5进行目标检测

文章目录[隐藏]

前言

ultralytics公司开源的目标检测算法yolov5在最近一段时间十分火热,而这次正好碰上一个实际应用(分拣小车)的机会,便在此记录下全过程以供参考。其中目标检测的作用在于标出每一帧输入图像中垃圾的具体位置(框),并以该信息做PNP解算,得到相应需发送给下位机的速度指令,使其到达垃圾所在位置并捡起以进行后续操作。
实际效果如下:

Nvidia TX2实现垃圾目标检测(yolov5 + TensorRT)

 

文章列表

  1. Nvidia Jetson TX2刷机(三天刷机真实过程包教包会)
  2. [超详细!!!]yolov5_4.0版本目标检测(环境配置+数据集制作+模型训练)–垃圾分拣业务流
  3. 【全网唯一】【yolov5模型部署落地】Nvidia Jetson TX2使用TensorRT部署yolov5s模型

版权声明:本文为CSDN博主「Rosetta_Leong」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/RosettaLeong/article/details/117880883

Rosetta_Leong

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

目标检测中的数据格式转换工具Roboflow

目标检测中的数据格式转换工具、Roboflow Roboflow提供了您需要的所有工具,将原始图像转换为定制的训练有素的计算机视觉模型,并部署它在您的应用程序中使用。 Roboflow支持检测目标和分类模型。 支持多种标注格式的转换: