遥感小目标检测论文梳理

旋转检测器

ReDet(2021CVPR)

[2103.07733] ReDet: A Rotation-equivariant Detector for Aerial Object Detection (arxiv.org)

Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss(2021ICML)

[2101.11952] Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss (arxiv.org)

Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence (2021 NIPS)

[2106.01883] Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence (arxiv.org)

Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection

[2106.06072] Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection (arxiv.org)

The KFIoU Loss for rotated object detection

pdf (openreview.net)

DCL(2021CVPR)

[2011.09670] Dense Label Encoding for Boundary Discontinuity Free Rotation Detection (arxiv.org)

CSL(ECCV2020)

[2003.05597v2] Arbitrary-Oriented Object Detection with Circular Smooth Label (arxiv.org)

R3Det(AAAI2021)

[1908.05612] R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object (arxiv.org)

S2ANet

[2008.09397] Align Deep Features for Oriented Object Detection (arxiv.org)

Learning Modulated Loss for Rotated Object Detection(AAAI2021)

[1911.08299] Learning Modulated Loss for Rotated Object Detection (arxiv.org)

Dynamic Anchor Learning for Arbitrary-Oriented Object Detection(AAAI2021)

[2012.04150] Dynamic Anchor Learning for Arbitrary-Oriented Object Detection (arxiv.org)


小目标检测

Scale Match for Tiny Person Detection

[1912.10664] Scale Match for Tiny Person Detection (arxiv.org)

The 1st Tiny Object Detection Challenge: Methods and Results

2009.07506.pdf (arxiv.org)

Tiny Object Detection in Aerial Images(2021ICPR)

Tiny Object Detection in Aerial Images | IEEE Conference Publication | IEEE Xplore

Dot Distance for Tiny Object Detection in Aerial Images (2021CVPRW)

Dot Distance for Tiny Object Detection in Aerial Images (thecvf.com)

A Normalized Gaussian Wasserstein Distance for Tiny Object Detection

[2110.13389] A Normalized Gaussian Wasserstein Distance for Tiny Object Detection (arxiv.org)

YOLT(2018CVPR)

[2110.13389] A Normalized Gaussian Wasserstein Distance for Tiny Object Detection (arxiv.org)

UA-CMDet

多模态

[2003.02437] Drone-based RGB-Infrared Cross-Modality Vehicle Detection via Uncertainty-Aware Learning (arxiv.org)

UFPMP-Det: Toward Accurate and Efficient Object Detection on Drone Imagery(2022AAAI)

[2112.10415v1] UFPMP-Det: Toward Accurate and Efficient Object Detection on Drone Imagery (arxiv.org)

SCRDet(ICCV2019)

SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects (thecvf.com)

RSDet

[1911.08299] Learning Modulated Loss for Rotated Object Detection (arxiv.org)

Gliding Vertex

[1911.09358] Gliding vertex on the horizontal bounding box for multi-oriented object detection (arxiv.org)

SPPNet

[2107.01548] SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (arxiv.org)

Extended Feature Pyramid Network for Small Object Detection

[2003.07021v1] Extended Feature Pyramid Network for Small Object Detection (arxiv.org)

密集小目标检测

ClusDet(2019ICCV)

[1904.08008] Clustered Object Detection in Aerial Images (arxiv.org)

DMNet(2020CVPRW)

密度图方法

[2004.05520] Density Map Guided Object Detection in Aerial Images (arxiv.org)

CRENet(2020ECCVW)

Object Detection Using Clustering Algorithm Adaptive Searching Regions in Aerial Images | SpringerLink

GLSAN(2020TIP)

A Global-Local Self-Adaptive Network for Drone-View Object Detection | IEEE Journals & Magazine | IEEE Xplore

AdaZoom

结合强化学习

[2106.10409] AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large Scenes (arxiv.org)

CMDNet(2021ICCVW)

密度图方法

Coarse-Grained Density Map Guided Object Detection in Aerial Images (thecvf.com)


GAN

Perceptual Generative Adversarial Networks for Small Object Detection(2017CVPR)

SOD-MTGAN:Small Object Detection via Multi-Task Generative Adversarial Network(2018ECCV)

Better to Follow, Follow to Be Better: Towards Precise Supervision of Feature Super-Resolution(2019ICCV)


YOLO系列

YOLOv1

[1506.02640] You Only Look Once: Unified, Real-Time Object Detection (arxiv.org)

YOLOv2

[1612.08242] YOLO9000: Better, Faster, Stronger (arxiv.org)

YOLOv3

YOLOv3.pdf (pjreddie.com)

YOLOv3 Tiny

GitHub - yjh0410/yolov2-yolov3_PyTorch

YOLO Nano

[1910.01271] YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection (arxiv.org)

YOLOv4

[2004.10934] YOLOv4: Optimal Speed and Accuracy of Object Detection (arxiv.org)

Scaled YOLOv4

[2011.08036] Scaled-YOLOv4: Scaling Cross Stage Partial Network (arxiv.org)

YOLOv5

GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

YOLObile(AAAI2021)

部署方案

[2009.05697] YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design (arxiv.org)

YOLOF(CVPR2021)

优化了FPN

[2103.09460] You Only Look One-level Feature (arxiv.org)

YOLOX

CVPR2021自动驾驶竞赛冠军方案的技术总结

[2107.08430] YOLOX: Exceeding YOLO Series in 2021 (arxiv.org)

YOLOS

结合Transformer

[2106.00666] You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection (arxiv.org)

YOLOR

引入隐性知识

[2105.04206] You Only Learn One Representation: Unified Network for Multiple Tasks (arxiv.org)

PP-YOLOv2

[2106.00666] You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection (arxiv.org)

版权声明:本文为CSDN博主「小马好评」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_43433069/article/details/122586245

小马好评

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

制作YOLOv5数据集

1 使用labelImg标注数据集 labelImg是一个可视化的图像标定工具。Faster R-CNN,YOLO,SSD等目标检测网络所需要的数据集,均需要借此工具标定图像中的目标。可以标注两种格式

FPN 特征金字塔 理解

Feature Pyramid Networks 对于Faster Rcnn使用FPN,cocoAP提升2.3个点,pascalAP提升3.8个点 1*1的conv,调整通道数,原论文中