Yolov5同时进行目标检测和分割分割

文章目录[隐藏]

基于yolov5(v6.0分支)的多任务检测和分割模型。

之前很早就萌生idea在yolov5基础上添加一个分割头用于语义分割,近期正好也有论文YLOLOP是这么做的.

这里基于yolov5最新分支修改,主要改动如下:

1 . 解耦头:实验在小数据集上有一定效果(map 1%+ ),大数据集上提升不明显;

2. 类别权重:在长尾分布的数据集上提升较为明显.

3.添加分割头用于语义分割。

整体框架

​​​​​​​ 

 

上图是在yolop模型上修改的,侵删。

整个模型分为三个部分:

1) backbone:这里使用yolov5骨干;

2)neck: panet;

3)head:检测头+分割头

检测头参考了YOLOX进行了解耦;针对不同数据和任务可能会有一定提升。

数据集

这里使用VOC数据集进行训练,具体的,检测训练集为VOC07+12的训练集,测试集为VOC07的测试集;分割使用VOC12的分割训练集,测试集为其测试集,主要是方便和SSD进行对比:

 使用yolov5s进行实验,输入也为512;设置训练300epoch;但是这里节省时间训练快到200 epoch停止:

model VOC2007 test
SSD512 79.8
yolov5s+seghead(512) 79.2

Demo

源码:https://github.com/midasklr/yolov5dshttps://github.com/midasklr/yolov5ds

参考:

1.[YOLOP: You Only Look Once for Panoptic Driving Perception](https://arxiv.org/abs/2108.11250)

2. GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLiteYOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite. Contribute to ultralytics/yolov5 development by creating an account on GitHub.https://github.com/ultralytics/yolov5

版权声明:本文为CSDN博主「MidasKing」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/IEEE_FELLOW/article/details/121912670

MidasKing

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolov5测试和训练自己的数据集

ylov5测试与训练自己的数据集 项目地址:yolov5-git官方地址 说明和环境配置测试自己环境制作自己的数据集开始训练和检测自己的模型过程遇到的问题解决 1.环境配置和说明 本人未做深度学习方面的研究,

YOLOV5训练自己目标检测模型和cpu检测

先来看看我们要实现的效果,我们将会通过数据来训练一个口罩检测的模型,并用pyqt5进行封装,实现图片口罩检测、视频口罩检测和摄像头实时口罩检测的功能。 代码的下载地址是:GitHub: ONNX > CoreML > TFLite">GitH