yolov5增加检测层

yolov5增加小目标检测层

一,model文件解释

yolov5的模型配置文件解释如下:

1.类别数和模型深度宽度控制

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

nc:代表类别数
depth_multiple:模型深度参数
width_multiple:模型宽度参数
其中模型深度宽度控制,是通过上面两个参数,作用于BottleneckCSP。
2.初始Anchor参数

原始模型,只有三个检测层,因此对应三组初始化Anchor值。当输入图像尺寸为640X640时,# P3/8 对应的检测层大小为80X80大小,可以用来检测大小在8X8以上的目标。# P4/16对应的检测层大小为40X40大小,可以用来检测大小在16X16以上的目标。# P5/32对应的检测层大小为20X20大小,可以用来检测32X32以上的目标。
3.骨干网络

这一段配置主要是为了提取图像特征
4.检测头部

这一段配置,实际上包括了两个部分,即颈部(Neck)和Prediction,在颈部,主要利用类似FPN+PAN的方式。对骨干网络提取到的特征,进行多尺度融合处理。再送入检测层。
在yolov3中,该阶段只用到了FPN融合,FPN是一种自顶向下传达强语义特征的网络,即一个正金字塔形结构,融合的特征图越来越小。在yolov5中,除了使用FPN结构对特征进行融合,还使用到了PAN结构,PAN与FPN网络正好相反,是一个倒金字塔结构,自底向上传达强定位特征。两者相互结合。

二,增加小目标的配置文件

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [5,6, 8,14, 15,11]  #4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],   #160*160
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],  #80*80
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]], #40*40
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9   20*20
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],  #20*20
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 13     40*40

   [-1, 1, Conv, [512, 1, 1]], #40*40
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   80*80
   [-1, 3, BottleneckCSP, [512, False]],  # 17 (P3/8-small)  80*80

   [-1, 1, Conv, [256, 1, 1]], #18  80*80
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #19  160*160
   [[-1, 2], 1, Concat, [1]], #20 cat backbone p2  160*160
   [-1, 3, BottleneckCSP, [256, False]], #21 160*160

   [-1, 1, Conv, [256, 3, 2]],  #22   80*80
   [[-1, 18], 1, Concat, [1]], #23 80*80
   [-1, 3, BottleneckCSP, [256, False]], #24 80*80

   [-1, 1, Conv, [256, 3, 2]], #25  40*40
   [[-1, 14], 1, Concat, [1]],  # 26  cat head P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 27 (P4/16-medium) 40*40

   [-1, 1, Conv, [512, 3, 2]],  #28  20*20
   [[-1, 10], 1, Concat, [1]],  #29 cat head P5  #20*20
   [-1, 3, BottleneckCSP, [1024, False]],  # 30 (P5/32-large)  20*20

   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(p2, P3, P4, P5)
  ]

可以看到,主要对两个地方进行了修改
1.初始Anchor设置

# anchors
anchors:
  - [5,6, 8,14, 15,11]  #4
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

这里的修改,主要是增加了一组Anchor;在这里没什么要求,只要数值小一点就行
2.检测头部

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],  #20*20
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 13     40*40

   [-1, 1, Conv, [512, 1, 1]], #40*40
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   80*80
   [-1, 3, BottleneckCSP, [512, False]],  # 17 (P3/8-small)  80*80

   [-1, 1, Conv, [256, 1, 1]], #18  80*80
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #19  160*160
   [[-1, 2], 1, Concat, [1]], #20 cat backbone p2  160*160
   [-1, 3, BottleneckCSP, [256, False]], #21 160*160

   [-1, 1, Conv, [256, 3, 2]],  #22   80*80
   [[-1, 18], 1, Concat, [1]], #23 80*80
   [-1, 3, BottleneckCSP, [256, False]], #24 80*80

   [-1, 1, Conv, [256, 3, 2]], #25  40*40
   [[-1, 14], 1, Concat, [1]],  # 26  cat head P4  40*40
   [-1, 3, BottleneckCSP, [512, False]],  # 27 (P4/16-medium) 40*40

   [-1, 1, Conv, [512, 3, 2]],  #28  20*20
   [[-1, 10], 1, Concat, [1]],  #29 cat head P5  #20*20
   [-1, 3, BottleneckCSP, [1024, False]],  # 30 (P5/32-large)  20*20

   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(p2, P3, P4, P5)
  ]

在这一部分,主要增加了几个操作层,在第17层后,继续对特征图进行上采样等处理,使得特征图继续扩大,同时在第20层时,将获取到的大小为160X160的特征图与骨干网络中第2层特征图进行concat融合,以此获取更大的特征图进行小目标检测。
在第31层,即检测层,增加小目标检测层,一共使用四层[21, 24, 27, 30]进行检测。
在增加检测层后,带来的问题就是计算量增加,导致推理检测速度降低。不过对于小目标,确实有很好的改善。

版权声明:本文为CSDN博主「小俊俊的博客」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_41868104/article/details/111596851

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

玩转KITTI3D目标检测:KITTI评估工具evaluate的使用

近期因实验需要利用kitti数据集,发现关于评估工具使用的部分网上教程不够详细,特此记录. 文末为了方便对数据结果观看,附上了修改代码. 1. KITTI评估工具来源 官网评估工具 下载后文件目录包含: matlab(2D/3D框显示和

yolov5训练数据集划分

yolov5训练数据集划分 按照默认8:1:1划分训练集,测试集,验证集。 txt文件出现在imageset文件夹。 import os import randomtrainval_pe

深度学习之目标检测YOLOv5

一.简介 YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析&#xff0