【3D目标检测】PointPillars论文和代码解析

1.前言

本文要解析的模型叫做PointPillars,是2019年出自工业界的一篇Paper。

该模型最主要的特点是检测速度和精度的平衡。该模型的平均检测速度达到了62Hz,最快速度达到了105Hz,确实遥遥领先了其他的模型。这里我们引入CIA-SSD模型中的精度-速度图,具体对比如下所示
在这里插入图片描述
可以看出,截止CIA-SSD论文发表前,PointPillars的检测速度都是遥遥领先的,而且精度也不低。

现有的一些研究喜欢将不规则、稀疏的点云数据按照以下两种方式进行处理,然后引入RPN层进行3D Bbox Proposal,这两种方法为:

(1)将点云数据划纳入一个个体素(Voxel)中,构成规则的、密集分布的体素集。常见的有VoxelNet和SECOND,这在之前的文章中已经解析过了;

(2)从俯视角度将点云数据进行处理,获得一个个伪图片的数据。常见的模型有MV3D和AVOD,这也说过了。

本文采用了一种不同于上述两种思路的点云建模方法。从模型的名称PointPillars可以看出,该方法将Point转化成一个个的Pillar(柱体),从而构成了伪图片的数据。

然后对伪图片数据进行BBox Proposal就很简单了,作者采用了SSD的网络结构进行了Proposal。

本文的论文地址为:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1812.05784
代码地址为:https://link.zhihu.com/?target=https%3A//github.com/SmallMunich/nutonomy_pointpillars

2 数据处理和网络结构

前面说到本文的一大亮点是将点云划分为一个个的Pillar,从而构成了伪图片的数据。

如何构成这个伪图片呢?作者在论文中是给出了这样的图,如下。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.损失函数

在这里插入图片描述

4 总结

PointPillars是一款能够平衡检测速度和检测精度的3D检测模型。最近我也正在看这个模型的代码,上手玩玩这个模型,希望最后的结果能够惊艳到我(微笑)。如果文章解析部分有理解不到位的地方,欢迎各位批评指正!

写的很清楚,转载自:https://zhuanlan.zhihu.com/p/357626425?ivk_sa=1024320u

版权声明:本文为CSDN博主「AI松子666」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39523365/article/details/123114224

AI松子666

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

[目标检测]CenterNet

模型四元素:背景模型结构与输出后处理损失函数 背景 目标检测就是识别出图中物体的位置,目前常用物体检测器详尽列出潜在物体的位置并对每个位置进行分类,这比较低效,并且需要额外的后处理。

两阶段目标检测的开山奠基之作:R-CNN

首次将深度学习和卷积神经网络用于目标检测并取得显著性能提升。 图像分类、定位、目标检测、语义分割、实例分割、关键点检测(关节等等输出点的坐标) 图像分类(输入图像输出类别)目标检测&#xf