CVPR2021目标检测方向论文

完整的paper list已经出来了。

http://cvpr2021.thecvf.com/node/142


CVPR2021录取结果刚出来,不过离全部的paper list还有一段时间,接下来应该会有人提前将论文贴出来,准备陆续收集相关的论文研究起来。


[1] Distilling Object Detectors via Decoupled Features

[2] Positive-Unlabeled Data Purification in the Wild for Object Detection

[3] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

paper: https://arxiv.org/abs/2011.09094

code: https://github.com/dddzg/up-detr

[4] Instance Localization for Self-supervised Detection Pretraining

paper: https://arxiv.org/abs/2102.08318

code: https://github.com/limbo0000/InstanceLoc

[5] Dogfight: Detecting Drones from Drone Videos

[6] Multiple Instance Active Learning for Object Detection

paper: https://github.com/yuantn/MIAL/raw/master/paper.pdf

code: https://github.com/yuantn/MIAL

[7] Towards Open World Object Detection

paper: https://arxiv.org/abs/2103.02603

code: https://github.com/JosephKJ/OWOD

[8] Depth from Camera Motion and Object Detection

paper: https://arxiv.org/abs/2103.01468

[9] There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge

paper: https://arxiv.org/abs/2103.01353

code: http://rl.uni-freiburg.de/research/multimodal-distill

[10] Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection

paper: https://arxiv.org/abs/2103.01903

[11] Categorical Depth Distribution Network for Monocular 3D Object Detection

paper: https://arxiv.org/abs/2103.01100

[12] Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

paper: https://arxiv.org/abs/2011.09670

code: https://github.com/yangxue0827/RotationDetection

[13] Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection

paper: https://arxiv.org/abs/2011.12885

code: https://github.com/implus/GFocalV2

[14] Unveiling the Potential of Structure-Preserving for Weakly Supervised Object Localization

paper: https://arxiv.org/abs/2103.04523

[15] MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection

paper: https://arxiv.org/abs/2103.04224

[16] OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection

paper: https://arxiv.org/abs/2103.04507

code: https://github.com/VDIGPKU/OPANAS

[17] General Instance Distillation for Object Detection

paper: https://arxiv.org/abs/2103.02340

[18] ST3D: Self-training for Unsupervised Domain Adaptation on 3D ObjectDetection

paper: https://arxiv.org/abs/2103.05346

code: https://github.com/CVMI-Lab/ST3D

[19] Center-based 3D Object Detection and Tracking

paper: https://arxiv.org/abs/2006.11275

code: https://github.com/tianweiy/CenterPoint

[20] 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection

paper: https://arxiv.org/abs/2012.04355

code: https://github.com/THU17cyz/3DIoUMatch

[21] Simultaneously Localize, Segment and Rank the Camouflaged Objects

paper: https://arxiv.org/abs/2103.04011

code: https://github.com/JingZhang617/COD-Rank-Localize-and-Segment

[22] Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

paper: https://arxiv.org/abs/2011.09670

code: https://github.com/Thinklab-SJTU/DCL_RetinaNet_Tensorflow

[23] You Only Look One-level Feature

paper: https://arxiv.org/abs/2103.09460

code: https://github.com/megvii-model/YOLOF

[24] AQD: Towards Accurate Quantized Object Detection

paper: http://arxiv.org/abs/2007.06919

[25] Points as Queries: Weakly Semi-supervised Object Detection by Points

[26] Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

paper: https://arxiv.org/abs/2103.11402

版权声明:本文为CSDN博主「一个菜鸟的奋斗」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u013685264/article/details/114276953

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

单目3D目标检测调研

单目3D目标检测调研 一、 简介 现有的单目3D目标检测方案主要方案主要分为两类,分别为基于图片的方法和基于伪雷达点云的方法。   基于图片的方法一般通过2D-3D之间的几何约束来学习,包括目标形状信息&#xff0

火灾烟雾检测数据集

火灾烟雾检测数据集(群名:火灾烟雾检测) 1. CVPR Lab ——KMU Fire and Smoke database(视频数据,可直接下载) http