Detection2(一)安装

文章目录[隐藏]

源码下载及编译

下载

可以在github上下载或者直接通过命令行下载

  1. 链接下载: https://github.com/facebookresearch/detectron2

  2. 命令下载:

     git clone https://github.com/facebookresearch/detectron2.git
    

编译

python -m pip install -e detectron2

Demo

首先在 model_zoo 里选择一个预训练的 model,这里选择 mask_rcnn_R_50_FPN_3x.yaml.

python demo/demo.py --config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
 --input input1.jpg \
 --output . \
 --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl 

说明一下:
-config-file configs/COCO-… 读取 model 配置

–input input1.jpg 设置输入。 input1.jpg 位于根目录
–output . |设置输出路径,这里设为根目录

版权声明:本文为CSDN博主「锅巴不写代码」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_45095281/article/details/122229528

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

One-stage Detection YOLO 与 SSD对比

作为在one-stage Detection领域中,存在两类领军级别的检测器,大部分的one-stage的检测器都或多或少能看到这两者的影子,这两个就是YOLO和SSD。 本文主要从思想上对比YOLO和

车辆行人检测学习笔记

车辆行人检测学习笔记 1、目标检测&常见检测网络 目标检测:物体识别是要分辨出图片中有什么物体,输入是图片,输出是类别标签和概率。而目标检测不仅要检测图片中有什么物体,还要输出无异的外

Deep Learning 目标检测

对检测到的结果进行解析  #----------------------------目标检测*解析字典result------------------------------------------- from numpy import arr