大致整理了一些。现在大多数还是基于机器学习的模型。
论文集合如下。
数据集整理如下。
Name |
where |
abbreviation |
content |
distortions |
url |
Perceptual Evaluation of Light Field Image |
2018-ICIP |
Win5-LID |
220 distorted LFIs with 6 distortion types |
HEVC / JPEG2000 / LN / NN / two distortions from conv |
|
Reconstruction Distortion Oriented Light Field Image Dataset for Visual Communication |
2019-ISNCC |
NBU1.0 |
210 distorted LFIs with 5 distortion types |
NN / bicubic interpolation / learning based reconstruction / disparity map based reconstruction / spatial super-resolution reconstruction(3 levels) |
https://github.com/JianjunXiang/PVRI/blob/616b68ba13a959b42479f423b0425e2da6a57e8e/README.txt |
VALID: Visual quality Assessment for Light field Images Dataset |
2018-QoMEX |
VALID |
8bits and 10bits LFIs |
5 original LFIs and 40 8bits distorted with VP9 and HEVC(4 levels) |
VALID: Visual quality Assessment for Light field Images Dataset ‒ MMSPG ‐ EPFL |
A no-reference image quality assessment metric by multiple characteristics of light field images |
2019-Access |
240 distortion LFIs with 5 types |
JPEG / JPEG2000 / Gaussian blur / motion blur / white noise(6 levels) |
||
Towards a New Quality Metric for 3-D Synthesized View Assessment |
2011-J-STSP |
MPI-LFA |
336 distorted LFIs |
HEVC / LINEAR / NN / optical flow estimation(OPT) / quantized depth maps(DQ) / gaussian blur(6 levels) |
|
Towards the perceptual quality evaluation of compressed light field images |
2017-T-Broadcast |
SMART |
256 distorted LFIs |
HEVC / JPEG / JPEG2000 / SSDC |
COMLAB - Telecommunication Lab (实验室的链接但是不知道为啥数据库的链接失效了) |
Towards a quality metric for dense light fields |
2017-CVPR |
Dense Light Fields dataset |
LINEAR / NN / OPT / DQ / GAUSS |
||
A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields |
2016-ACCV |
||||
The (New) Stanford Light Field Archive |
(这里表格编辑的好累。。虽然很丑但是懒得改了。。
版权声明:本文为CSDN博主「棉毛裤穿吗」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39782006/article/details/122926493
暂无评论