红外小目标检测之DANNet

Dense Nested Attention Network for Infrared Small Target Detection

文章亮点:

1.提出一种密集嵌套交互模块通道-空间注意力模块,实现渐进特征融合和自适应特征增强。A dense nested interactive module and a channel-spatial
attention module are proposed to achieve progressive
feature fusion and adaptive feature enhancement.
2.提出了用于红外小目标检测的数据集:NUDT-SIRST。
3.文中提出的红外弱小目标检测评价指标很新颖!提供了一种新的评估方式。

1.Overall Architecture

网络分为三个模块:The Feature Extraction Module、The Feature Pyramid Fusion Module、The Eight-connected Neighborhood Clustering Module

1.1 Feature Extraction Module

1.1.1 The Dense Nested Interactive Module

如下图所示将多个u形子网堆叠在一起,形成密集的嵌套结构。
在这里插入图片描述
由于不同尺度的目标的最佳感受野差异很大,这些不同深度的u形子网络自然适合于不同大小的目标。基于这一思想,我们在编码器和解码器子网之间的路径上增加了多个节点。每个节点都可以接收到来自自身和相邻层的特征,导致重复的多层特征融合。
在这里插入图片描述
(文中特征层的公式计算我觉得有点问题,还没看代码这里存疑)

1.1.2 Channel and Spatial Attention Module

这一部分和之前有人提出的CABM模块基本一样,只是改了个名字。借其他博主的:CABM
在这里插入图片描述
通道-空间注意力机制模块用来增强目标特征,在1.1.1中提出的多层特征融合阶段加入注意力机制可以更好的保留目标特征。该模块由通道注意力模块和空间注意力模块组合而成。
通道注意力:
在这里插入图片描述
空间注意力:
在这里插入图片描述

1.2 The Feature Pyramid Fusion Module

先把多层特征融合后的不同层的结果上采样,然后将具有丰富空间信息的浅层特征和具有丰富语义信息的深层特征级联,生成全局鲁棒特征图。
在这里插入图片描述

1.3 The Eight-connected Neighborhood Clustering Module

如果特征图g中任意两个像素g(m0,n0), g(m1,n1)在它们的八个邻域有交集区域,且值相同(0或1),则认为这两个像素处于同一个连通区域。

2. Evaluation Metrics

其他的基于卷积网络的检测算法的评价指标经常使用像素级的评价指标,然而,红外小目标普遍缺乏形状和纹理。对于3*3小目标,错误预测一个像素会导致Pd降低11.1%。而目标的整体定位才是小目标检测中的关键任务。因此采用了检测率和虚警率来评估目标定位能力,采用IOU像素级评价指标评估形状描述能力。

2.1 Intersection over Union

在这里插入图片描述

2.2 Probability of Detection

在这里插入图片描述

2.3 False-Alarm Rate

在这里插入图片描述
最后根据不同阈值下的Pd和Pf的关系画出ROC曲线。

版权声明:本文为CSDN博主「鱼木木和木木鱼」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_45171138/article/details/120748716

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

玩转KITTI3D目标检测:KITTI评估工具evaluate的使用

近期因实验需要利用kitti数据集,发现关于评估工具使用的部分网上教程不够详细,特此记录. 文末为了方便对数据结果观看,附上了修改代码. 1. KITTI评估工具来源 官网评估工具 下载后文件目录包含: matlab(2D/3D框显示和