keras-yolo3-master训练自己的数据集,训练出的权重trained_weights.h5在目标检测时无法框出有效目标

算法小白,尝试使用yolov3算法检测自己的数据集,最开始自己制作了数据集(167张图像)用于训练,训练后进行检测时发现,无法有效框出目标物体,输出如下:

自认为可能是我自己的数据集图片数量过少,所以截取了VOC数据集中的近1000张图像进行重新训练,依旧如此。随后搜索发现这篇文章也有提到相关问题:https://blog.csdn.net/Asunany/article/details/80376185

看他的评论里有提到两种解决思路:(1)在cfg/yolov3_voc.cfg里把训练模式切换成检测模式 # Testing batch=1 subdivisions=1 # Training #batch=64 #subdivisions=16

(2)调小(小于0.25)thresh

重新训练看下检测效果

以上均无效,训练出来的权重依旧无法有效检测物体

修改数据集,将voc2007中的鸟类图像及标注单独组成数据集(共计288张图像)重新训练,依旧无法检测。

记录并求助各路大神,感激不尽!!!

版权声明:本文为CSDN博主「Hui_Wang5806」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Hui_Wang5806/article/details/122229892

Hui_Wang5806

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me

目标检测入坑指南3:VGGNet神经网络

学了蛮久的目标检测了,但是有好多细节总是忘或者模棱两可,感觉有必要写博客记录一下学习笔记和一些心得,既可以加深印象又可以方便他人。博客内容集成自各大学习资源,所以图片也就不加水印了&#xf