keras-yolo3-master训练自己的数据集,训练出的权重trained_weights.h5在目标检测时无法框出有效目标

算法小白,尝试使用yolov3算法检测自己的数据集,最开始自己制作了数据集(167张图像)用于训练,训练后进行检测时发现,无法有效框出目标物体,输出如下:

自认为可能是我自己的数据集图片数量过少,所以截取了VOC数据集中的近1000张图像进行重新训练,依旧如此。随后搜索发现这篇文章也有提到相关问题:https://blog.csdn.net/Asunany/article/details/80376185

看他的评论里有提到两种解决思路:(1)在cfg/yolov3_voc.cfg里把训练模式切换成检测模式 # Testing batch=1 subdivisions=1 # Training #batch=64 #subdivisions=16

(2)调小(小于0.25)thresh

重新训练看下检测效果

以上均无效,训练出来的权重依旧无法有效检测物体

修改数据集,将voc2007中的鸟类图像及标注单独组成数据集(共计288张图像)重新训练,依旧无法检测。

记录并求助各路大神,感激不尽!!!

版权声明:本文为CSDN博主「Hui_Wang5806」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Hui_Wang5806/article/details/122229892

Hui_Wang5806

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

CVPR2021: Sparse R-CNN新的目标检测模型

今天我们将讨论由四个机构的研究人员提出的一种方法,其中一个是字节跳动人工智能实验室。他们为我们提供了一种新的方法,称为稀疏R-CNN(不要与 Sparse R-CNN 混淆,后者在 3D 计算机视觉任务

深度学习_目标检测_“YOLOv5”详解(持续更新)

我最近对很火的元宇宙及其衍生概念进行了思考,虽然现在谈元宇宙落地还为时尚早,但是根据这个愿景反推回来很多的技术趋势和未来的发展方向还是值得关注的。下面是我的公众号原文:【AI行业进展研究与商业价值分析】