跑通mmf:visualBert实现过程

使用代码github链接:https://github.com/di-dimitrov/propaganda-techniques-in-memes

该代码相当在mmf-master上展开自己的任务,之前想直接跑通facebook的MMF,但是被两个问题困扰:

  • 环境配置
  • 新数据集的构造

后来被推荐了这套代码,才跑通了visualBert模型。

实现过程

1 将项目下载并存放到服务器

2 Install MMF

  1. Prerequisites - generating image caption features for VisualBERT and ViLBERT:
    i. Install MMF according to the instructions here:
    https://mmf.readthedocs.io/en/website/notes/installation.html

该链接中给出了安装MMF的两种方法:
1.在这里插入图片描述
2.
在这里插入图片描述
我使用方法1安装总会在后期出现各种环境报错,方法2安装就成功了,所以建议安装不成功的试试方法2安装。

3 Install the following packages

ii. Install the following packages: pip install yacs, opencv-python, cython (if using ‘pip’, any package manager works)

4 Clone vqa-maskrcnn-benchmark repository

iii. Clone vqa-maskrcnn-benchmark repository: https://gitlab.com/vedanuj/vqa-maskrcnn-benchmark
a. Run python setup.py build
b. Run python setup.py develop

5 feature extraction

c. Run the feature extraction script from the following path:
mmf/tools/scripts/features/extract_features_vmb.py

这一步对图片进行处理,先将图片存放到data/datasets/propaganda/defaults/images下,执行

python tools/scripts/features/extract_features_vmb.py

控制台显示如下即为正在处理(这里,“/”后的数字应该和images文件夹下的图片总数一致):
在这里插入图片描述
如果图片文件夹的布局不寻常,可在extract_features_vmb.pyline273以下稍作修改。该步骤的生成文件默认存储在./output文件夹下。

5 convert the features to a .mdb file

d. After feature extraction is done convert the features to a .mdb file with the following script: mmf/tools/scripts/features/extract_features_vmb.py

此处存在笔误,实际运行程序为:

python tools/scripts/features/lmdb_conversion.py --mode convert --lmdb_path ./save --features_folder ./output

其中,传参内容的含义可见lmdb_conversion.py

        parser.add_argument(
            "--mode",
            required=True,
            type=str,
            help="Mode can either be `convert` (for conversion of \n"
            + "features to an LMDB file) or `extract` (extract \n"
            + "raw features from a LMDB file)",default="convert"
        )
        parser.add_argument(
            "--lmdb_path", required=True, type=str, help="LMDB file path",default="./save"
        )
        parser.add_argument(
            "--features_folder", required=True, type=str, help="Features folder",default="./output"
        )

该步骤会在./save文件夹下生成data.mdb文件。

6 Rename the .mdb features file to deceptron.lmdb and move it

Rename the .mdb features file to deceptron.lmdb and move it to /root/.cache/torch/mmf/data/datasets/propaganda/defaults/features/

7 Running the models

2.Running the models - open ‘Propaganda_Detection.ipynb’ and run the code inside.

程序默认是多GPU的,指定服务器上的固定节点跑程序:

CUDA_VISIBLE_DEVICES=1 !mmf_run config=./projects/propaganda/configs/visual_bert/direct.yaml \
 datasets=propaganda \
 model=visual_bert

visualBert:对于关键修改位置的备注

参数修改位置

/root/propaganda-techniques-in-memes-main/projects/propaganda/configs/visual_bert/defaults.yaml

修改数据集标签数

/root/propaganda-techniques-in-memes-main/mmf/datasets/builders/propaganda/dataset.py
line81,line147修改标签数量

数据集存放位置

/root/.cache/torch/mmf/data/datasets/propaganda/defaults/annotations/

实现环境备注

torch == 1.7.1+cu110
torchtext == 0.5.0
torchvision == 0.8.2+cu110
pytorch-lightning == 1.4.9

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

版权声明:本文为CSDN博主「xiyou__」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xiyou__/article/details/121792839

xiyou__

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

弱监督目标检测

弱监督目标检测 弱监督目标检测的解决方案 基于多示例学习的弱监 督目标检测算法 基于类激活图的弱监督目标检测算法 基于注意力机制的弱监督目标检测算法 基于伪标签的弱监督目标检测算法 弱监督目标检测主要面临的问题 定位的精度&#xff