Realsense D435i Yolov5目标检测实时获得目标三维位置信息


一、效果演示

- Colorimage:

colorimage

- Colorimage and depthimage:

color depth image


二、环境配置

1.一个可以运行YOLOv5的python环境

pip install -r requirements.txt

2.一个realsense相机和pyrealsense2库

pip install pyrealsense2

在下面两个环境中测试成功

  • win10 python 3.8 Pytorch 1.10.2+gpu CUDA 11.3 NVIDIA GeForce MX150

  • ubuntu16.04 python 3.6 Pytorch 1.7.1+cpu

三、模型配置

修改模型配置文件,以yolov5s为例。
如果使用自己训练的模型,需要进行相应的修改。

weight:  "weights/yolov5s.pt"
# 输入图像的尺寸
input_size: 640
# 类别个数
class_num:  80
# 标签名称
class_name: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
         'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
         'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
         'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
         'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
         'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
         'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
         'hair drier', 'toothbrush' ]
# 阈值设置
threshold:
  iou: 0.45
  confidence: 0.6
# 计算设备
# - cpu
# - 0 <- 使用GPU
device: '0'

四、相机配置

分辨率好像只能改特定的参数,不然会报错。d435i可以用 1280x720, 640x480, 848x480。

pipeline = rs.pipeline()  # 定义流程pipeline
config = rs.config()  # 定义配置config
config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30)
profile = pipeline.start(config)  # 流程开始

五、部分代码:

下方代码实现从像素坐标系到相机坐标系转换,并且标注中心点以及三维坐标信息。

for i in range(len(xyxy_list)):
    ux = int((xyxy_list[i][0]+xyxy_list[i][2])/2)  # 计算像素坐标系的x
    uy = int((xyxy_list[i][1]+xyxy_list[i][3])/2)  # 计算像素坐标系的y
    dis = aligned_depth_frame.get_distance(ux, uy)  
    camera_xyz = rs.rs2_deproject_pixel_to_point(
    depth_intrin, (ux, uy), dis)  # 计算相机坐标系xyz
    camera_xyz = np.round(np.array(camera_xyz), 3)  # 转成3位小数
    camera_xyz = camera_xyz.tolist()
    cv2.circle(canvas, (ux,uy), 4, (255, 255, 255), 5)#标出中心点
    cv2.putText(canvas, str(camera_xyz), (ux+20, uy+10), 0, 1,
                                [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)#标出坐标
    camera_xyz_list.append(camera_xyz)
    #print(camera_xyz_list)

六、仓库链接:

代码已上传github:yolov5_d435i_detection

版权声明:本文为CSDN博主「Fr0mdeepsea」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Thinkin9/article/details/122913810

Fr0mdeepsea

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me

目标检测入坑指南3:VGGNet神经网络

学了蛮久的目标检测了,但是有好多细节总是忘或者模棱两可,感觉有必要写博客记录一下学习笔记和一些心得,既可以加深印象又可以方便他人。博客内容集成自各大学习资源,所以图片也就不加水印了&#xf

Yolov3代码实现

voc数据集构建文件 import sys import xml.etree.ElementTree as ET import config.yolov3_config_voc as cfg import os from tqdm impor