mAP@0.5: mean Average Precision(IoU=0.5)
即将IoU设为0.5时,计算每一类的所有图片的AP,然后所有类别求平均,即mAP。
mAP@.5:.95(mAP@[.5:.95])
表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP。
那AP是什么呢,Average Precision,是单个类别平均精确度,而mAP是所有类别的平均精确度
AP是Precision-Recall Curve曲线下面的面积
曲线面积越大说明AP的值越大,类别的检测精度就越高。Recall可以考虑叫做查全率,Precision叫做查准率,两者是相互矛盾的指标,如果能够较好的平衡两者,将在不同的条件下得到较好的检测效果,也就是图中的曲线面积。
P
r
e
c
i
s
i
o
n
=
T
P
T
P
+
F
P
Precision= {TP \over TP+FP}
Precision=TP+FPTP
R
e
c
a
l
l
=
T
P
T
P
+
F
N
Recall = {TP \over TP + FN}
Recall=TP+FNTP
其中:
True Positive区域:正样本预测为正样本
False Positive区域:正样本预测为负样本
False Negative区域:负样本预测为正样本
True Negative区域:负样本预测为负样本
预测样本在检测中就是预测框的大小,我们设置的IoU就是指的真实框与预测框的交并比,如果大于阈值就是正确,小于就是错误。
在Yolo系列中,mAP@.5效果还是不错的,但mAP@.5:0.95的效果较差,可能是IoU的值设定过高对于检测框的位置要求也过高,同时,ground truth
也是认为标定的,也没法说明高精度性。(有点偏袒yolo系列=_=)!!
版权声明:本文为CSDN博主「Fighting_1997」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/frighting_ing/article/details/121197733
暂无评论