开始做这个之前,了解一些vue的基础,然后对flask完全不知道。所以特别感谢很多博主的文章。
主要参考的是这篇文章:在WEB端部署YOLOv5目标检测(Flask+VUE),博主在GitHub上详细的代码给我一个很好的参考,他采用的是前后端分离开发的方式。
一.前端搭建
参考视频:vue+elementUI管理平台系列
参考博客:Flask + Vue 搭建简易系统步骤总结
vue-cli2.9.6+ElementUI搭建。(首先要安装node)
1.搭建脚手架:npm install -g vue-cli@2.9.6
2.创建一个基于webpack模板的项目vue init webpack 自定义项目名
3.运行项目npm run dev
二.后端搭建
主要是yolov5环境的一个搭建。
参考博客:(1)使用conda创建python的虚拟环境,介绍了如何安装与删除虚拟环境
(2)【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署),我的配置就是根据这个来的。
1.首先是虚拟环境的配置(最好是在虚拟环境中搭建,血与泪的教训),conda create -n torch107 python=3.7
2.激活虚拟环境activate torch107
3.安装pytorch,首先已经安装anaconda3,yolov5需要pytorch1.6以上,pip3 install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
4.下载源码和安装环境依赖
源码指路:https://github.com/Sharpiless/Yolov5-Flask-VUE
安装依赖库:pip install -r requirements.txt
,txt文件内容如下:
# pip install -r requirements.txt
# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
# logging -------------------------------------
tensorboard>=2.4.1
# wandb
# plotting ------------------------------------
seaborn>=0.11.0
pandas
# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.0
# scikit-learn==0.19.2 # for coreml quantization
# extras --------------------------------------
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
pycocotools>=2.0 # COCO mAP
thop # FLOPS computation
三.yolov5检测视频
参考视频:https://www.bilibili.com/video/BV1FK411K78w?t=1536,时间25:36以后
我的代码:
检测代码Detect.py:
import torch
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, letterbox
from utils.torch_utils import select_device
import cv2
from random import randint
class VideoCamera(object):
def __init__(self):
# 通过opencv获取实时视频流
self.img_size = 640
self.threshold = 0.4
self.max_frame = 160
self.video = cv2.VideoCapture("E:/videodata/1.mp4") #换成自己的视频文件
self.weights = 'weights/final.pt' #yolov5权重文件
self.device = '0' if torch.cuda.is_available() else 'cpu'
self.device = select_device(self.device)
model = attempt_load(self.weights, map_location=self.device)
model.to(self.device).eval()
model.half()
# torch.save(model, 'test.pt')
self.m = model
self.names = model.module.names if hasattr(
model, 'module') else model.names
self.colors = [
(randint(0, 255), randint(0, 255), randint(0, 255)) for _ in self.names
]
def __del__(self):
self.video.release()
def get_frame(self):
ret, frame = self.video.read() #读视频
im0, img = self.preprocess(frame) #转到处理函数
pred = self.m(img, augment=False)[0] #输入到模型
pred = pred.float()
pred = non_max_suppression(pred, self.threshold, 0.3)
pred_boxes = []
image_info = {}
count = 0
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
for *x, conf, cls_id in det:
lbl = self.names[int(cls_id)]
x1, y1 = int(x[0]), int(x[1])
x2, y2 = int(x[2]), int(x[3])
pred_boxes.append(
(x1, y1, x2, y2, lbl, conf))
count += 1
key = '{}-{:02}'.format(lbl, count)
image_info[key] = ['{}×{}'.format(
x2 - x1, y2 - y1), np.round(float(conf), 3)]
frame = self.plot_bboxes(frame, pred_boxes)
# 因为opencv读取的图片并非jpeg格式,因此要用motion JPEG模式需要先将图片转码成jpg格式图片
ret, jpeg = cv2.imencode('.jpg', frame)
return jpeg.tobytes()
def preprocess(self, img):
img0 = img.copy()
img = letterbox(img, new_shape=self.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() # 半精度
img /= 255.0 # 图像归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img0, img
def plot_bboxes(self, image, bboxes, line_thickness=None):
tl = line_thickness or round(
0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness
for (x1, y1, x2, y2, cls_id, conf) in bboxes:
color = self.colors[self.names.index(cls_id)]
c1, c2 = (x1, y1), (x2, y2)
cv2.rectangle(image, c1, c2, color,
thickness=tl, lineType=cv2.LINE_AA)
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(
cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(image, '{}-{:.2f} '.format(cls_id, conf), (c1[0], c1[1] - 2), 0, tl / 3,
[225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
return image
app.py代码:
from flask import *
import cv2
import logging as rel_log
from datetime import timedelta
from flask_cors import CORS
from Detect import VideoCamera
app = Flask(__name__)
cors = CORS(app, resources={r"/getMsg": {"origins": "*"}}) #解决跨域问题,vue请求数据时能用上
@app.route('/')
def index():
return render_template('index.html') #template文件夹下的index.html
def gen(camera):
while True:
frame = camera.get_frame()
# 使用generator函数输出视频流, 每次请求输出的content类型是image/jpeg
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
@app.route('/video_feed') # 这个地址返回视频流响应
def video_feed():
return Response(gen(VideoCamera()),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
app.run(host='127.0.0.1', port=5000, debug=True)
index.html:
<html>
<head>
<title>视频检测</title>
<style>
div{
margin: 0 auto;
text-align: center;
width: 1200px;
height: 800px;
}
img{
width: 100%;
height: 100%;
}
</style>
</head>
<body>
<div>
<h1>linjie</h1>
<img src="{{ url_for('video_feed') }}">
</div>
</body>
</html>
运行后端python app.py
输入http://localhost:5000/,得到一个用flask实现的网页端目标检测。至于如何将这个视频与vue写的前端结合起来,还请大家给点意见,我是直接通过:response = { 'image_url': 'http://127.0.0.1:5000/video_feed' }
,但总觉得哪里不妥。。。
版权声明:本文为CSDN博主「s123l4」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/s123l4/article/details/117673238
暂无评论