微笑识别(HOG+SVM+opencv+python)

一、流程

  • 这是得到模型的大致流程,思路还是蛮清晰的,一步一步做就行了
    在这里插入图片描述

  • 下面是使用训练出的模型来检测时的流程,思路也不难,慢慢做就行
    在这里插入图片描述

  • dlib库及其训练集下载请移步博客

人脸特征提取(dlib+opencv3.4+python3.8)

  • HOG介绍请移步博客

HOG特征提取原理及实现

  • 数据集下载地址

https://www.saleae.com/zh/downloads/

二、代码

  • 先说下我自己的版本,注意昂

python 3.8 + opencv 3.4.11

  • 细说一说训练的流程,和上面的流程也差不多,不过多了一些细节

1.先构建一个HOG特征提取器,到时候图片处理完之后就可以直接提取特征了
2.第二步肯定是用opencv来读取数据集,但有些照片是检测不出脸的,可以直接删掉,我是用一个列表来表示能不能检测到脸
4.如果对一整张照片进行特征提取的话维数就太多了,不仅影响提取和训练速度,也影响心态,进行了图片截取,我截取的是嘴巴那一部分的,毕竟是检测微笑嘛
5.图片处理好了,就是提取图片的特征值了,提取了特征值之后就是筛掉检测不到脸的图片,后面就是训练和保存图像

  • 导包环节
# 导入包
import numpy as np
import cv2
import dlib
import random#构建随机测试集和训练集
from sklearn.svm import SVC #导入svm
from sklearn.svm import LinearSVC #导入线性svm
from sklearn.pipeline import Pipeline #导入python里的管道
import os
import joblib#保存模型
from sklearn.preprocessing import StandardScaler,PolynomialFeatures #导入多项式回归和标准化
import tqdm
  • 定义文件路径
folder_path='../source/picture/GENKI-R2009a/Subsets/GENKI-4K/'
label='GENKI-4K_Labels.txt'#标签文件
pic_folder='files/'#图片文件路径
  • 获得默认的人脸检测器和训练好的人脸68特征点检测器
#获得默认的人脸检测器和训练好的人脸68特征点检测器
def get_detector_and_predicyor():
    #使用dlib自带的frontal_face_detector作为我们的特征提取器
    detector = dlib.get_frontal_face_detector()
    """
    功能:人脸检测画框
    参数:PythonFunction和in Classes
    in classes表示采样次数,次数越多获取的人脸的次数越多,但更容易框错
    返回值是矩形的坐标,每个矩形为一个人脸(默认的人脸检测器)
    """
    #返回训练好的人脸68特征点检测器
    predictor = dlib.shape_predictor('..\\source\\shape_predictor_68_face_landmarks.dat')
    return detector,predictor
#获取检测器
detector,predictor=get_detector_and_predicyor()
  • 定义截取面部的函数
def cut_face(img,detector,predictor):   
    #截取面部
    img_gry=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    rects = detector(img_gry, 0)  
    if len(rects)!=0:
        mouth_x=0
        mouth_y=0
        landmarks = np.matrix([[p.x, p.y] for p in predictor(img,rects[0]).parts()])
        for i in range(47,67):#嘴巴范围
            mouth_x+=landmarks[i][0,0]
            mouth_y+=landmarks[i][0,1]
        mouth_x=int(mouth_x/20)
        mouth_y=int(mouth_y/20)
        #裁剪图片
        img_cut=img_gry[mouth_y-20:mouth_y+20,mouth_x-20:mouth_x+20]
        return img_cut
    else:
        return 0#检测不到人脸返回0
  • 定义提取特征值的函数
#提取特征值
def get_feature(files_train,face,face_feature):
    for i in tqdm.tqdm(range(len(files_train))):
        img=cv2.imread(folder_path+pic_folder+files_train[i])
        cut_img=cut_face(img,detector,predictor)
        if type(cut_img)!=int:
            face.append(True)
            cut_img=cv2.resize(cut_img,(64,64))
            #padding:边界处理的padding
            padding=(8,8)
            winstride=(16,16)
            hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,))
            face_feature.append(hogdescrip)
        else:
            face.append(False)#没有检测到脸的
            face_feature.append(0)
  • 定义筛选函数
def filtrate_face(face,face_feature,face_site): #去掉检测不到脸的图片的特征并返回特征数组和相应标签   
    face_features=[]
    #获取标签
    label_flag=[]
    with open(folder_path+label,'r') as f:
        lines=f.read().splitlines()
    #筛选出能检测到脸的,并收集对应的label
    for i in tqdm.tqdm(range(len(face_site))):
        if face[i]:#判断是否检测到脸
            #pop之后要删掉当前元素,后面的元素也要跟着前移,所以每次提取第一位就行了
            face_features.append(face_feature.pop(0))
            label_flag.append(int(lines[face_site[i]][0])) 
        else:
            face_feature.pop(0)
    datax=np.float64(face_features)
    datay=np.array(label_flag)
    return datax,datay
  • 定义多项式SVM,也试过高斯核,效果比多项式核差了很多,我把代码放上,想试试的可以在训练函数里更换一下就行了
def PolynomialSVC(degree,c=10):#多项式svm
    return Pipeline([
            # 将源数据 映射到 3阶多项式
            ("poly_features", PolynomialFeatures(degree=degree)),
            # 标准化
            ("scaler", StandardScaler()),
            # SVC线性分类器
            ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42,max_iter=10000))
        ])
#svm高斯核
def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])
  • 训练函数,感觉封装还是不够好,调用的时候还是比较臃肿
def train(files_train,train_site):#训练
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    train_face=[]
    #人脸的特征数组
    train_feature=[]
    #提取训练集的特征数组
    get_feature(files_train,train_face,train_feature)
    #筛选掉检测不到脸的特征数组
    train_x,train_y=filtrate_face(train_face,train_feature,train_site)
    svc=PolynomialSVC(degree=1)
    svc.fit(train_x,train_y)
    return svc#返回训练好的模型
  • 测试函数
def test(files_test,test_site,svc):#预测,查看结果集
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    test_face=[]
    #人脸的特征数组
    test_feature=[]
    #提取训练集的特征数组
    get_feature(files_test,test_face,test_feature)
    #筛选掉检测不到脸的特征数组
    test_x,test_y=filtrate_face(test_face,test_feature,test_site)
    pre_y=svc.predict(test_x)
    ac_rate=0
    for i in range(len(pre_y)):
        if(pre_y[i]==test_y[i]):
            ac_rate+=1
    ac=ac_rate/len(pre_y)*100
    print("准确率为"+str(ac)+"%")
    return ac
  • 构建HOG特征提取器
#设置hog的参数
winsize=(64,64)
blocksize=(32,32)
blockstride=(16,16)
cellsize=(8,8)
nbin=9
#定义hog
hog=cv2.HOGDescriptor(winsize,blocksize,blockstride,cellsize,nbin)
#获取文件夹里有哪些文件
files=os.listdir(folder_path+pic_folder)
  • 使用10-fold cross validation,中文翻译过来怪怪的,就是把数据集中随机的9/10做为训练集,剩下的1/10做为测试集,进行十次,本来嫌弃看着不舒服,但封装一下麻烦而且也没啥实际用处,忍忍就过去了
ac=float(0)
for j in range(10):
    site=[i for i in range(4000)]
    #训练所用的样本所在的位置
    train_site=random.sample(site,3600)
    #预测所用样本所在的位置
    test_site=[]
    for i in range(len(site)):
        if site[i] not in train_site:
            test_site.append(site[i])
    files_train=[]
    #训练集,占总数的十分之九
    for i in range(len(train_site)):
        files_train.append(files[train_site[i]])
    #测试集
    files_test=[]
    for i in range(len(test_site)):
        files_test.append(files[test_site[i]])
    svc=train(files_train,train_site)
    ac=ac+test(files_test,test_site,svc)
    save_path='../source/model/smile'+str(j)+'(hog).pkl'
    joblib.dump(svc,save_path)
ac=ac/10
print("平均准确率为"+str(ac)+"%")

  • 下面是这个的检测结果,结果其实还不错,虽然比用CNN的差了不少,但比高斯核好多了
    在这里插入图片描述
  • 其实只检测准确率其实不太行,毕竟样本中的正样本和负样本也不是对半分,下面是检测公式
    在这里插入图片描述
  • 检测函数
def test1(files_test,test_site,svc):#预测,查看结果集
    '''
    files_train:训练文件名的集合
    train_site :训练文件在文件夹里的位置
    '''
    #是否检测到人脸
    test_face=[]
    #人脸的特征数组
    test_feature=[]
    #提取训练集的特征数组
    get_feature(files_test,test_face,test_feature)
    #筛选掉检测不到脸的特征数组
    test_x,test_y=filtrate_face(test_face,test_feature,test_site)
    pre_y=svc.predict(test_x)
    tp=0
    tn=0
    for i in range(len(pre_y)):
        if pre_y[i]==test_y[i] and pre_y[i]==1:
            tp+=1
        elif pre_y[i]==test_y[i] and pre_y[i]==0:
            tn+=1
    f1=2*tp/(tp+len(pre_y)-tn)
    print(f1)
  • 加载刚刚保存本地模型然后调用检测函数看一下结果,还是不错的
svc7=joblib.load('../source/model/smile9(hog).pkl')
site=[i for i in range(4000)]
#训练所用的样本所在的位置
train_site=random.sample(site,3600)
#预测所用样本所在的位置
test_site=[]
for i in range(len(site)):
    if site[i] not in train_site:
        test_site.append(site[i])
#测试集
files_test=[]
for i in range(len(test_site)):
    files_test.append(files[test_site[i]])
test1(files_test,test_site,svc7)

在这里插入图片描述

  • 下面就是调用模型来检测了,定义一个笑脸检测函数,输入图片直接得到预测结果
def smile_detector(img,svc):
    cut_img=cut_face(img,detector,predictor)
    a=[]
    
    if type(cut_img)!=int:
        cut_img=cv2.resize(cut_img,(64,64))
    #padding:边界处理的padding
        padding=(8,8)
        winstride=(16,16)
        hogdescrip=hog.compute(cut_img,winstride,padding).reshape((-1,))
        a.append(hogdescrip)
        result=svc.predict(a)
        a=np.array(a)
        return result[0]
    else :
        return 2
  • 图片检测实例
##图片检测
pic_path='../source/picture/test.jpg'
img=cv2.imread(pic_path)
result=smile_detector(img,svc7)
if result==1:
    img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
elif result==0:
    img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
else:
    img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
cv2.imshow('video', img)
cv2.waitKey(0)
  • 检测效果,可以看到效果还是不错的,检测出了没有笑容
    在这里插入图片描述
  • 摄像头实时检测并保持,按s键保存刚刚的识别的图片,按esc退出
camera = cv2.VideoCapture(0)#打开摄像头
ok=True
flag=0
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
while ok:
    ok,img = camera.read()
     # 转换成灰度图像
    result=smile_detector(img,svc7)
    if result==1:
        img=cv2.putText(img,'smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    elif result==0:
        img=cv2.putText(img,'no smile',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    else:
        img=cv2.putText(img,'no face',(21,50),cv2.FONT_HERSHEY_COMPLEX,2.0,(0,255,0),1)
    cv2.imshow('video', img)
    k = cv2.waitKey(1)
    if k == 27:    # press 'ESC' to quit
        break
    elif k==115:
        pic_save_path='../source/picture/GENKI-R2009a/result/'+str(flag)+'.jpg'
        flag+=1
        cv2.imwrite(pic_save_path,img)
camera.release()
cv2.destroyAllWindows()
  • 检测的效果在这里插入图片描述

三、随笔

  • 技术方面其实没啥可说的,毕竟自己一点一点写的嘛,看着流程图就能想起许多,反而是在后面摄像头实时检测时想法较多,为了检测出一个笑容真是弄了好久,不知道什么时候连笑都不会了,回想一下近两年的经历,其实发现这好像也是一种蛮不错的结果,毕竟差点陷入抑郁之中,一点动力都没有,恢复到正常也蛮不错的,慢慢就好起来啦。人生还是幸福一点过的才比较舒服,活在压力下那不叫生活,看淡点啥都没那么糟糕。不唠叨了,这些还是在私下慢慢写。

四、参考资料

版权声明:本文为CSDN博主「伊始不觉」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/junseven164/article/details/121831011

伊始不觉

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

OpenCV之目标检测

前言 案例 Fu Xianjun. All Rights Reserved. 随着当今世界的发展,计算机视觉技术的应用越来越广泛。伴随着硬件设备的不断升级,构造复杂的计算机视觉应用变得越来越容易了。OpenCV像是