吴恩达深度学习4-3作业Yolo课后作业目标检测环境配置问题Windows

文章目录[隐藏]

这个作业的代码很老了所以新的环境是运行不了的
为了避免改代码,最好使用tensorflow1.x
我测试出了不会报错的环境
以下是配置环境代码

conda install python=3.6 
conda install tensorflow=1.13.1
conda install keras=2.3
conda install matplotlib=2.0.2
conda install pandas=0.20.3
pip install pillow==3.4.2
conda install numpy=1.14.5

pillow可能会失败 在这里下载pillow=3.4.2
我下载的是Pillow‑3.4.2‑cp36‑cp36m‑win_amd64.whl 然后pip install 【路径名文件名】

enviroment.yml如下

name: deeplearning
channels:
  - defaults
dependencies:
  - _tflow_select=2.2.0=eigen
  - absl-py=0.13.0=py36haa95532_0
  - astor=0.8.1=py36haa95532_0
  - blas=1.0=mkl
  - ca-certificates=2021.10.26=haa95532_2
  - certifi=2021.5.30=py36haa95532_0
  - cycler=0.11.0=pyhd3eb1b0_0
  - dataclasses=0.8=pyh4f3eec9_6
  - freetype=2.8=h51f8f2c_1
  - gast=0.5.3=pyhd3eb1b0_0
  - grpcio=1.14.1=py36h5c4b210_0
  - h5py=2.10.0=py36h5e291fa_0
  - hdf5=1.10.4=h7ebc959_0
  - icc_rt=2019.0.0=h0cc432a_1
  - icu=58.2=ha925a31_3
  - importlib-metadata=4.8.1=py36haa95532_0
  - intel-openmp=2021.4.0=haa95532_3556
  - jpeg=9d=h2bbff1b_0
  - keras=2.3.1=0
  - keras-applications=1.0.8=py_1
  - keras-base=2.3.1=py36_0
  - keras-preprocessing=1.1.2=pyhd3eb1b0_0
  - libpng=1.6.37=h2a8f88b_0
  - libprotobuf=3.17.2=h23ce68f_1
  - markdown=3.3.4=py36haa95532_0
  - matplotlib=2.0.2=py36h58ba717_1
  - mkl=2018.0.3=1
  - mkl_fft=1.0.6=py36hdbbee80_0
  - mkl_random=1.0.1=py36h77b88f5_1
  - mock=4.0.3=pyhd3eb1b0_0
  - numpy=1.14.5=py36h9fa60d3_4
  - numpy-base=1.14.5=py36h5c71026_4
  - openssl=1.0.2u=he774522_0
  - pandas=0.20.3=py36hce827b7_2
  - pip=21.2.2=py36haa95532_0
  - protobuf=3.17.2=py36hd77b12b_0
  - pyparsing=3.0.4=pyhd3eb1b0_0
  - pyqt=5.6.0=py36ha878b3d_6
  - pyreadline=2.1=py36_1
  - python=3.6.13=h3758d61_0
  - python-dateutil=2.8.2=pyhd3eb1b0_0
  - pytz=2021.3=pyhd3eb1b0_0
  - pyyaml=5.4.1=py36h2bbff1b_1
  - qt=5.6.2=vc14h6f8c307_12
  - scipy=1.1.0=py36hc28095f_0
  - setuptools=58.0.4=py36haa95532_0
  - sip=4.18.1=py36hd77b12b_2
  - six=1.16.0=pyhd3eb1b0_0
  - sqlite=3.36.0=h2bbff1b_0
  - tbb=2021.4.0=h59b6b97_0
  - tbb4py=2021.3.0=py36h59b6b97_0
  - tensorboard=1.13.1=py36h33f27b4_0
  - tensorflow=1.13.1=eigen_py36hf0a88a9_0
  - tensorflow-base=1.13.1=eigen_py36hf8af7b3_0
  - tensorflow-estimator=1.13.0=py_0
  - termcolor=1.1.0=py36haa95532_1
  - tornado=6.1=py36h2bbff1b_0
  - typing_extensions=3.10.0.2=pyh06a4308_0
  - vc=14.2=h21ff451_1
  - vs2015_runtime=14.27.29016=h5e58377_2
  - werkzeug=2.0.2=pyhd3eb1b0_0
  - wheel=0.37.0=pyhd3eb1b0_1
  - wincertstore=0.2=py36h7fe50ca_0
  - yaml=0.2.5=he774522_0
  - zipp=3.6.0=pyhd3eb1b0_0
  - zlib=1.2.11=h62dcd97_4
  - pip:
    - argon2-cffi==21.1.0
    - async-generator==1.10
    - attrs==21.2.0
    - backcall==0.2.0
    - bleach==4.1.0
    - cached-property==1.5.2
    - cffi==1.15.0
    - colorama==0.4.4
    - decorator==5.1.0
    - defusedxml==0.7.1
    - entrypoints==0.3
    - ipykernel==5.5.6
    - ipython==7.16.2
    - ipython-genutils==0.2.0
    - ipywidgets==7.6.5
    - jedi==0.17.2
    - jinja2==3.0.3
    - jsonschema==3.2.0
    - jupyter==1.0.0
    - jupyter-client==7.1.0
    - jupyter-console==6.4.0
    - jupyter-core==4.9.1
    - jupyterlab-pygments==0.1.2
    - jupyterlab-widgets==1.0.2
    - markupsafe==2.0.1
    - mistune==0.8.4
    - nbclient==0.5.9
    - nbconvert==6.0.7
    - nbformat==5.1.3
    - nest-asyncio==1.5.4
    - notebook==6.4.6
    - packaging==21.3
    - pandocfilters==1.5.0
    - parso==0.7.1
    - pickleshare==0.7.5
    - pillow==3.4.2
    - prometheus-client==0.12.0
    - prompt-toolkit==3.0.23
    - pycparser==2.21
    - pygments==2.10.0
    - pyrsistent==0.18.0
    - pywin32==302
    - pywinpty==1.1.6
    - pyzmq==22.3.0
    - qtconsole==5.2.1
    - qtpy==1.11.3
    - send2trash==1.8.0
    - terminado==0.12.1
    - testpath==0.5.0
    - traitlets==4.3.3
    - wcwidth==0.2.5
    - webencodings==0.5.1
    - widgetsnbextension==3.5.2
prefix: D:\anaconda\anaconda3\envs\deeplearning

版权声明:本文为CSDN博主「minatosan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/minatosan/article/details/121719076

minatosan

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

目标检测YOLO系列------YOLO简介

YOLO以及各种变体已经广泛应用于目标检测算法所涉及到的方方面面,为了梳理YOLO系列算法建立YOLO系列专题,按照自己的理解讲解YOLO中的知识点和自己的一些思考。本文是开篇之作,首先简单介绍一下YO

目标检测算法(YOLOv1)

目标检测算法(YOLOv1) 论文题目:You Only Look Once: Unified, Real-Time Object Detection 网络架构 YOLOv1的模型架构参考GoogleNet,一共有24个卷积层,2个全连接