文章目录[隐藏]
上一篇:小技巧(4):将txt中的某两列数据写入csv文件中,制作图像分类标签
一、相关准备
1.1 下载数据集
http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/data.zip
TT100K数据集下载下来大概19.2G,解压后的文件夹如图
1.2 下载代码文件
https://github.com/cqfdch/TT100K_to_VOC
1.3 将相关文件移入代码文件
讲TT100K中的train文件、test文件夹、annotations.json文件移入代码文件夹。
二、创建标准的VOC文件夹
import os
# 建立相关文件夹
# build voc2007 folder structure
def make_voc_dir():
root_dir = os.getcwd()
os.makedirs(root_dir+'/VOC2007')
os.makedirs("VOC2007"+'/Annotations')
os.makedirs("VOC2007" + '/JPEGImages/ ')
os.makedirs("VOC2007"+'/ImageSets')
os.makedirs("VOC2007"+'/ImageSets/Main')
if __name__ == '__main__':
make_voc_dir()
三、生成整个数据集的XML文件
import os
import json
from lxml import etree as ET
from xml.dom import minidom
#找出训练集和测试集中的不在45类的标注图片的id
def edit_xml(objects, id, dir):
save_xml_path = os.path.join(dir, "%s.xml" % id) # xml
root = ET.Element("annotation")
# root.set("version", "1.0")
folder = ET.SubElement(root, "folder")
folder.text = "none"
filename = ET.SubElement(root, "filename")
filename.text = id + ".jpg"
source = ET.SubElement(root, "source")
source.text = "none"
owner = ET.SubElement(root, "owner")
owner.text = "halftop"
size = ET.SubElement(root, "size")
width = ET.SubElement(size, "width")
width.text = str(2048)
height = ET.SubElement(size, "height")
height.text = str(2048)
depth = ET.SubElement(size, "depth")
depth.text = "3"
segmented = ET.SubElement(root, "segmented")
segmented.text = "0"
for obj in objects: #
object = ET.SubElement(root, "object")
name = ET.SubElement(object, "name") # number
name.text = obj["category"]
# meaning = ET.SubElement(object, "meaning") # name
# meaning.text = inf_value[0]
pose = ET.SubElement(object, "pose")
pose.text = "Unspecified"
truncated = ET.SubElement(object, "truncated")
truncated.text = "0"
difficult = ET.SubElement(object, "difficult")
difficult.text = "0"
bndbox = ET.SubElement(object, "bndbox")
xmin = ET.SubElement(bndbox, "xmin")
xmin.text = str(int(obj["bbox"]["xmin"]))
ymin = ET.SubElement(bndbox, "ymin")
ymin.text = str(int(obj["bbox"]["ymin"]))
xmax = ET.SubElement(bndbox, "xmax")
xmax.text = str(int(obj["bbox"]["xmax"]))
ymax = ET.SubElement(bndbox, "ymax")
ymax.text = str(int(obj["bbox"]["ymax"]))
tree = ET.ElementTree(root)
tree.write(save_xml_path, encoding="UTF-8", xml_declaration=True)
root = ET.parse(save_xml_path)
file_lines = minidom.parseString(ET.tostring(root, encoding="Utf-8")).toprettyxml(
indent="\t")
file_line = open(save_xml_path, "w", encoding="utf-8")
file_line.write(file_lines)
file_line.close()
def getDirId(dir): # get the id list of id.png
names = os.listdir(dir)
ids = []
for name in names:
# path = os.path.join(dir, name)
# img = cv2.imread(path)
# w, h, c = img.shape
# if name.endswith(".jpg") or name.endswith(".png"):
# ids["%s" % name.split(".")[0]] = [w, h, c]
ids.append(name.split(".")[0])
return ids
def is_tt45(objects):
flag = True
json_file = open('./TT100K_VOC_classes.json', 'r')
results = json.load(json_file)
for obj in objects:
text = obj["category"]
for key in results.keys():
flag1 = False
if key == text:
flag1 =True
break
if flag1 == False:
flag = False
break
return flag
filedir = "annotations.json"
annos = json.loads(open(filedir).read())
trainIds = getDirId("train/")
testIds = getDirId("test/")
ids = annos["imgs"].keys() # all img ids in .json
dir_train = "xmlLabel1/train"
dir_test = "xmlLabel1/test"
if not os.path.exists(dir_train):
os.makedirs(dir_train)
if not os.path.exists(dir_test):
os.makedirs(dir_test)
Not_TT45_list_train = []
Not_TT45_list_val = []
for id in ids:
# json 中的ID图片有待检测目标,且该id图片在 train文件夹中
if len(annos["imgs"][id]["objects"]) > 0 and (id in trainIds):
objects = annos["imgs"][id]["objects"]
flag = is_tt45(objects)
if flag is False:
Not_TT45_list_train.append(id+'\n')
edit_xml(objects, id, dir=dir_train)
elif len(annos["imgs"][id]["objects"]) > 0 and (id in testIds):
objects = annos["imgs"][id]["objects"]
flag = is_tt45(objects)
if flag is False:
Not_TT45_list_val.append(id+'\n')
edit_xml(objects, id, dir=dir_test)
with open("Not_TT45_list_train.txt" ,"a") as f:
f.writelines(Not_TT45_list_train)
with open("Not_TT45_list_val.txt" ,"a") as f:
f.writelines(Not_TT45_list_val)
四、删除txt中id对应XML和图片
import os
import glob
# 删除txt中id对应XML和图片
def delete_train_jpg(train_txt):
root_dir = os.getcwd()
for line in open(train_txt ,"r"):
file_id = line.strip()
# print(file_id)
file_path = os.path.join(root_dir,"train",file_id+'.jpg')
# print(file_path)
os.remove(file_path)
def delete_test_jpg(test_txt):
root_dir = os.getcwd()
for line in open(test_txt ,"r"):
file_id = line.strip()
# print(file_id)
file_path = os.path.join(root_dir,"test",file_id+'.jpg')
# print(file_path)
os.remove(file_path)
def delete_train_xml(train_txt):
root_dir = os.getcwd()
root_path = os.path.join(root_dir,"xmlLabel1")
for line in open(train_txt,"r"):
file_id = line.strip()
# print(file_id)
file_path = os.path.join(root_path,"train",file_id+'.xml')
# print(file_path)
os.remove(file_path)
def delete_test_xml(test_txt):
root_dir = os.getcwd()
root_path = os.path.join(root_dir,"xmlLabel1")
for line in open(test_txt,"r"):
file_id = line.strip()
# print(file_id)
file_path = os.path.join(root_path,"test",file_id+'.xml')
# print(file_path)
os.remove(file_path)
if __name__ == '__main__':
train_txt = "Not_TT45_list_train.txt"
test_txt = "Not_TT45_list_val.txt"
delete_train_jpg(train_txt)
delete_train_xml(train_txt)
delete_test_jpg(test_txt)
delete_test_xml(test_txt)
五 、生成tain.txt和val.txt文件
第一步,生成train.txt
需要将4_spilt_data.py中的下面两行改成
files_path = "/home/ch/Object_Detection/dataset/TT100K_to_VOC/xmlLabel1/train"
val_rate = 0
然后运行4_spilt_data.py文件,可得到train.txt和val.txt文件,其中val.txt文件是空文件。将train.txt文件移入VOC2017/ImageSets/Main中,删除val.txt文件。
第二步、生成val.txt
需要将4_spilt_data.py中的下面两行改成
files_path = "/home/ch/Object_Detection/dataset/TT100K_to_VOC/xmlLabel1/test"
val_rate =1
然后运行4_spilt_data.py文件,可得到train.txt和val.txt文件,其中train.txt文件是空文件。将val.txt文件移入VOC2017/ImageSets/Main中,删除train.txt文件。
import os
import random
files_path = "/home/ch/Object_Detection/dataset/TT100K_YOLO_Label-master/xmlLabel1/train"
if not os.path.exists(files_path):
print("文件夹不存在")
exit(1)
val_rate = 0
files_name = sorted([file.split(".")[0] for file in os.listdir(files_path)])
files_num = len(files_name)
val_index = random.sample(range(0, files_num), k=int(files_num*val_rate))
train_files = []
val_files = []
for index, file_name in enumerate(files_name):
if index in val_index:
val_files.append(file_name)
else:
train_files.append(file_name)
try:
train_f = open("train.txt", "x")
eval_f = open("val.txt", "x")
train_f.write("\n".join(train_files))
eval_f.write("\n".join(val_files))
except FileExistsError as e:
print(e)
exit(1)
最后将生成的train.txt和val.txt放进VOC2017/ImageSets/Main文件夹中
下一篇:小技巧(6):进行BelgiumTSC交通标志数据集识别(定义自己的数据集)
版权声明:本文为CSDN博主「Hankerchen」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Hankerchen/article/details/120727299
暂无评论