CVPR2020 SMOKE 单目相机 3D目标检测【环境搭建篇】

文章目录[隐藏]

前言

SMOKE是一种用于自动驾驶的实时单目 3D 物体检测器。为什么会注意这边文章呢?是因为这两天发布的百度Apollo 7.0 的摄像头障碍物感知,也是基于这个模型改进的;于是令我产生了一些兴趣。

论文名称:SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation

论文地址:https://arxiv.org/pdf/2002.10111.pdf

开源地址:https://github.com/lzccccc/SMOKE

本文创建一个基于docker的SMOKE开发环境;SMOKE模型效果如下。

目录

版权声明:本文为CSDN博主「一颗小树x」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_41204464/article/details/122243245

一颗小树x

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

YOLOv5 目标检测

前言 YOLOv5官方发布的代码中,检测网络共有四个版本,依次为YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x 。其中YOLOv5s是“深度”和“特征图宽度”均最小的网络,另外三种可以认为是在其基础上,进行了加深、加宽。 看一

单目3D目标检测调研

单目3D目标检测调研 一、 简介 现有的单目3D目标检测方案主要方案主要分为两类,分别为基于图片的方法和基于伪雷达点云的方法。   基于图片的方法一般通过2D-3D之间的几何约束来学习,包括目标形状信息&#xff0