亚运会倒计时!AI目标检测助力亚运陈共举办!

关注并星标

从此不迷路

计算机视觉研究院

b638b2bfc5e86f49f4f63a6d4180c204.gif

e3c5b32be4cb0185dab0dc1896a4bd5c.png

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

目标检测是现在最热门的研究课题,目前最流行的还是Yolo系列框架,最近我们计算机视觉研究院也分享了很对目标检测干活及实践,都是Yolo-Base框架,今天我们分享一个经过修改后的Yolov5,实时检测的效果!

开源代码:https://github.com/ultralytics/yolov5/releases

01

8b104429e2c0140747895c39f7f01ada.png

前言

13540bdc47b90e9fdf66f9333ec671b7.png

目标检测是现在最热门的研究课题,现在的框架越来越多,但是技术的新颖性到了瓶颈,目前开始流行Transformer机制,而且在目标检测领域也能获得较大的提升,也是目前研究的一个热点。

f34fd58a957ca6645612a29b68839277.png

即将举行的亚运会,将会投入更多的先进科技,比如3D成像、姿态估计、目标检测、跟踪及识别!让去全世界看到不一样的中国,不一样的科技,不一样的亚运会。今天我们就说说目标检测会在亚运会中的体现!

f2d68eb0a064a06a4af928698664b172.png

4f5e38f7cb36dd9d600c7920c453dc6b.png

目前最流行的还是Yolo系列框架,最近我们“计算机视觉研究院”也分享了很对目标检测干活及实践,都是Yolo-Base框架。

02

587d7c6fec14c4efbe4f8e5a64e81ad6.png

新框架改进

efbd4e6261ff1eb93b1839a6bb86f8ff.png

今天我们分享一个经过简单优化过的Yolov5,暂时命名为:Pad-YoloV5,在IPad上可以实时检测!基于YoloV5框架,熟悉的同学应该都不用多加解释。

YoloV4在YoloV3的基础上增加了近两年的研究成果,如下:

  1. 输入端采用mosaic数据增强

  2. Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式。(cspnet减少了计算量的同时可以保证准确率)

  3. Mish函数为:

    eb288245e92259fca2061cede02a3c50.png

  4. Neck中采用了SPP、FPN+PAN的结构,

  5. 输出端则采用CIOU_Loss、DIOU_nms操作

YoloV5主要的改变,如下:

  1. 输入端:Mosaic数据增强、自适应锚框计算

  2. Backbone:Focus结构,CSP结构

  3. Neck:FPN+PAN结构

  4. Prediction:GIOU_Loss

这次主要优化,是YoloV5在数据增强的时候,用随机缩放、随机裁剪、随机排布的方式进行拼接,这个对于小目标的检测效果还是很友好的。通过实验发现,这个随机拼接和有规律的拼接,最终的结果还是有一点差别的。

788170eb8f1161e877068e5167dfa24f.png

首先我通过修改数据增强的策略,开始对整体数据集进行统计(也就是数据预处理分析),我大致分成三个范围。将最大的与最小的进行随机拼接,最终结果确实比整体随机的效果好!

325ffe4bbce545f81210bdb0581dc5d8.png

其次,稍微修改了下自适应图片缩放策略,Yolov5代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边。我是在自适应缩放后的图片,我在右下角位置填边,其实大多数数据没有什么变化,只是随便改改,因为在线都是在Yolo的基础上增加最近几年新出的策略,确实在最后的检查有一定效果的增加。

最后的修改,就是辛苦的把Transformer机制加进了YoloV5的基础框架中,训练确实加快了,但是对于用笔记本训练的成果物,还是不够明显。这也是最近第一次分享实践过程的一些小心思,具体的细节我们“计算机视觉研究院”后期会通过一篇干活详细和大家分享!

© THE END 

转载请联系本公众号获得授权

bc6c7cc40937b6d653dd7694d097f5ba.gif

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

4aa5647c42d07e2206df07986350a485.png

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

 往期推荐 

🔗

版权声明:本文为CSDN博主「计算机视觉研究院」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/gzq0723/article/details/122934697

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Cross Stage Partial Network(CSPNet)

Cross Stage Partial Network(CSPNet) 一. 论文简介 降低计算量,同时保持或提升精度 主要做的贡献如下(可能之前有人已提出): 提出一种思想,特征融合方式(降低计算量的