yolov3检测人头_目标检测之车辆行人(darknet版yolov3)

序言

自动驾驶是目前非常有前景的行业,而视觉感知作为自动驾驶中的“眼睛”,有着非常重要的地位和作用。为了能有效地识别到行驶在路上的动态目标,如汽车、行人等,我们需要提前对这些目标的进行训练,从而能够有效地避开,防止事故的发生。

目录:

目标检测之车辆检测(基于darknet框架的yolov3)

一、目标检测的概念

二、Darknet整体框架与安装测试

三、yolo模型特点与性能

四、基于Darknet的yolov3车辆检测模型

正文:

一、目标检测的概念

1.1 什么是目标检测

目标检测是我们用于识别图像中目标位置的技术。如果图像中有单个目标,并且我们想要检测该目标,则称为图像定位。如果图像中有多个目标怎么办?嗯,这就是目标检测!让我用一个例子解释一下:

cd4878ad8a2219dbadaba1c5679bdeb0.png

左侧的图像具有单个目标(狗),因此检测该目标将是图像定位问题。右边的图像有两个目标(一只猫和一只狗)。检测这两个目标则是目标检测问题。

自动驾驶是目标检测最有趣和最近的应用之一

自动驾驶汽车是能够在很少或无人为引导的情况下自行移动的车辆。现在,为了让汽车决定它的行动,即要么向前移动,要么停车,要么转弯,它必须知道它周围所有物体的位置。使用目标检测技术,汽车可以检测其他汽车,行人,交通信号等物体。

而大多数应用程序需要实时分析,实时检测。行业的动态性质倾向于即时结果,而这正是实时目标检测的结果。

二、Darknet整体框架与安装测试

Darknet是用纯C编写的小型深度学习框架,详细内容可参考以下链接:

三、yolo模型特点与性能

yolo是继RCNN,fast-RCNN 和 faster-RCNN之后,Ross Girshick 针对 DL 目标检测速度问题提出的另外一种框架,详细内容可参考以下链接:

四、基于Darknet的yolov3车辆检测模型

五、训练效果

模型:v6 416x416 40w:x0.1,45w:x0.1

avg:0.532/0.442          avg IoU:0.832          cls:0.999            obj:0.96          No obj:0.001       .5R :1.0     0.75R:0.85

使用MP4测试,帧率在25fps左右,非常卡顿,模型结构不能太深,检测速度下降明显。

版权声明:本文为CSDN博主「weixin_39707168」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_39707168/article/details/113689448

weixin_39707168

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

单目3D目标检测调研

单目3D目标检测调研
一、 简介 现有的单目3D目标检测方案主要方案主要分为两类,分别为基于图片的方法和基于伪雷达点云的方法。   基于图片的方法一般通过2D-3D之间的几何约束来学习,包括目标形状信息&#xff0