yolov3训练自己的数据集(MMDetection)

用FasterRcnn训练了自己标注的数据集Voc格式,现在想用yolo来训练一下,修改了yolo文件内容,打算直接用yolo训练voc格式的数据,出现了一点问题 ,因为比较着急,就没有再详细研究。
MMDetection中大多训练模型为coco格式设计,计划把 voc格式转换为coco格式,也方便以后其他模型的训练。

1.voc格式转换为coco格式

可参考:

https://github.com/Stephenfang51/VOC_to_COCO

2.coco相关文件的修改

可参考
【mmdetection】使用自定义的coco格式数据集进行训练及测试

(1)定义数据种类(mmdetection/mmdet/datasets/coco.py),把CLASSES的那个tuple改为自己数据集对应的种类tuple即可。

   CLASSES = ('Other Car', 'Taxi')

(2)修改coco_classes数据集类别(mmdetection/mmdet/core/evaluation/class_names.py)

def coco_classes():
    return [
        'Other Car', 'Taxi'
    ]

(3)修改使用模型model字典中的num_classes

num_classes=2,#类别数

3.训练

python tools/train.py configs/yolo/yolov3_d53_mstrain-608_273e_coco.py

版权声明:本文为CSDN博主「chenf0」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/chenfang0529/article/details/120983714

chenf0

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me

目标检测入坑指南3:VGGNet神经网络

学了蛮久的目标检测了,但是有好多细节总是忘或者模棱两可,感觉有必要写博客记录一下学习笔记和一些心得,既可以加深印象又可以方便他人。博客内容集成自各大学习资源,所以图片也就不加水印了&#xf

Yolov3代码实现

voc数据集构建文件 import sys import xml.etree.ElementTree as ET import config.yolov3_config_voc as cfg import os from tqdm impor