YOLOX训练自己的VOC数据集
【YOLOX训练部署】YOLOX训练自己的VOC数据集_乐亦亦乐的博客-CSDN博客
将自己训练的YOLOX权重转化成ONNX 并进行推理
【YOLOX训练部署】将自己训练的YOLOX权重转化成ONNX 并进行推理_乐亦亦乐的博客-CSDN博客
ONNX 在 CPU 上推理速度较慢,对比GPU效果,使用GPU对onnx进行推理。具体操作:
首先卸载onnxruntime,并安装onnxruntime-gpu
pip uninstall onnxruntime
pip install onnxruntime-gpu
还是使用【YOLOX训练部署】将自己训练的YOLOX权重转化成ONNX 并进行推理_乐亦亦乐的博客-CSDN博客
中的onnx_inference_video.py 进行推理。
运行:
python onnx_inference_video.py -m /media/liqiang/新加卷/YOLOX/my_yolox_s.onnx -i ./4.mp4 -o /media/liqiang/新加卷/YOLOX -s 0.3 --input_shape 640,640
会出现如下问题:
解决:修改代码
session = onnxruntime.InferenceSession(
args.model, providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'])
完整推理代码:
'''
Descripttion:
version:
Author: LiQiang
Date: 2022-01-01 09:39:19
LastEditTime: 2022-01-01 10:23:07
'''
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import argparse
import os
import cv2
import numpy as np
import onnxruntime
from yolox.data.data_augment import preproc as preprocess
# from yolox.data.datasets import COCO_CLASSES
from yolox.data.datasets import VOC_CLASSES
from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis
def make_parser():
parser = argparse.ArgumentParser("onnxruntime inference sample")
parser.add_argument(
"-m",
"--model",
type=str,
default="yolox.onnx",
help="Input your onnx model.",
)
parser.add_argument(
"-i",
"--video_path",
type=str,
# default='test_image.png',
help="Path to your input image.",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
default='demo_output',
help="Path to your output directory.",
)
parser.add_argument(
"-s",
"--score_thr",
type=float,
default=0.3,
help="Score threshould to filter the result.",
)
parser.add_argument(
"--input_shape",
type=str,
default="640,640",
help="Specify an input shape for inference.",
)
parser.add_argument(
"--with_p6",
action="store_true",
help="Whether your model uses p6 in FPN/PAN.",
)
return parser
if __name__ == '__main__':
args = make_parser().parse_args()
input_shape = tuple(map(int, args.input_shape.split(',')))
# origin_img = cv2.imread(args.image_path)
session = onnxruntime.InferenceSession(
args.model, providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'])
cap = cv2.VideoCapture(args.video_path)
while True:
ret, origin_img = cap.read()
img, ratio = preprocess(origin_img, input_shape)
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
output = session.run(None, ort_inputs)
predictions = demo_postprocess(output[0], input_shape, p6=args.with_p6)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
conf=args.score_thr, class_names=VOC_CLASSES)
cv2.imshow('result', origin_img)
c = cv2.waitKey(1)
if c == 27:
break
# mkdir(args.output_dir)
# output_path = os.path.join(args.output_dir, args.image_path.split("/")[-1])
# cv2.imwrite(output_path, origin_img)
重新运行:
python onnx_inference_video.py -m /media/liqiang/新加卷/YOLOX/my_yolox_s.onnx -i ./4.mp4 -o /media/liqiang/新加卷/YOLOX -s 0.3 --input_shape 640,640
可以看出速度明显提升!
版权声明:本文为CSDN博主「乐亦亦乐」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_41251963/article/details/122265641
暂无评论