自制coco数据集流程

1.我从coco数据集提取了12个类,数据集制作好了
2.更改了configs中fasterrcnn的类别数

,更改了coco.py里的

和mmdet\core\evaluation\class_names.py中的

3.重新编译
4.执行命令 python .\tools\train.py .\configs\faster_rcnn\faster_rcnn_r101_fpn_1x_coco.py

版权声明:本文为CSDN博主「故乡的云和星星」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39328536/article/details/122416024

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

分享 | 物体检测和数据集

因为最近学习任务比较紧(但也不妨碍元旦摆烂三天),所以中间有几个实战Kaggle比赛就跳过了,等以后有时间再回头来看看。物体检测和数据集这一节花了有一天的时间,一直有一个bug困扰,后来改了代码把box

目标检测——yolov3论文精读

📝论文下载 Abstract(摘要) YOLOv3在YOLO的基础上做了一些更新,重点在于提升检测的精度。当图片的分辨率为320 × 320,YOLOv3只使用了22 ms进行检测, m