自制coco数据集流程

1.我从coco数据集提取了12个类,数据集制作好了
2.更改了configs中fasterrcnn的类别数

,更改了coco.py里的

和mmdet\core\evaluation\class_names.py中的

3.重新编译
4.执行命令 python .\tools\train.py .\configs\faster_rcnn\faster_rcnn_r101_fpn_1x_coco.py

版权声明:本文为CSDN博主「故乡的云和星星」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39328536/article/details/122416024

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

CVPR2021: Sparse R-CNN新的目标检测模型

今天我们将讨论由四个机构的研究人员提出的一种方法,其中一个是字节跳动人工智能实验室。他们为我们提供了一种新的方法,称为稀疏R-CNN(不要与 Sparse R-CNN 混淆,后者在 3D 计算机视觉任务

实战深度学习目标检测:RCNN (1)

深度学习目标检测:RCNN 什么是目标检测?目标检测主要是明确从图中看到了什么物体?他们在什么位置。传统的目标检测方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域&#xff0c