自制coco数据集流程

1.我从coco数据集提取了12个类,数据集制作好了
2.更改了configs中fasterrcnn的类别数

,更改了coco.py里的

和mmdet\core\evaluation\class_names.py中的

3.重新编译
4.执行命令 python .\tools\train.py .\configs\faster_rcnn\faster_rcnn_r101_fpn_1x_coco.py

版权声明:本文为CSDN博主「故乡的云和星星」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39328536/article/details/122416024

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【目标检测】锚框

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 【个人学习笔记记录,如有错误,请指正!】 一、锚框 理解锚框之前,我们需

yolo-fastest模型

两个关于yolo-fastest的资料 https://github.com/dog-qiuqiu/Yolo-FastestV2/ https://github.com/dog-qiuqiu/Yolo-Fastest

手把手教你实现YOLOv3 (一)

1. 引言 最近整理了YOLO系列相关论文阅读笔记,发现仅仅靠阅读论文还是有很多内容一知半解,吃得不是很透彻. 尽管网络上有很多博客都在讲解,但是很多实现细节细究起来还是有些困难. 俗话说的好: Talk is cheap. Show me