文章目录[隐藏]
Automanous-3D-detection-methods
版权注释
该项目地址为:https://github.com/LittleYuanzi/awesome-Automanous-3D-detection-methods
2017~2020汇总部分由CSDN博主Little_sky_jty博主倾力攥写,2021部分我将对其进行维护更新为我个人所用,无任何商业目的,如有侵权,告知删除
前言
该项目主要在对近期(17年)开始的自动驾驶场景的目标检测方法做一个汇总,持续更新,也欢迎大家参与进来。为了方便表示,该项目仅仅针对自动驾驶场景,分类方法按照输入进行划分,特别地,我们也对论文实验对应的论文做出一定的标注。
keywords
inputs
按照传感器的输入: monocular
: 单目 stereo
: 双目 lidar
: 点云 RGB-D
: 深度图
如果是多种传感器融合: image+lidar
: 图像+点云
对应实验数据集
用于标注该文章实验对应的数据集: kitti
: KITTI nuse
: NuScence waymo
: Waymo ATG4D
: ATG4D [lyft
]: lyft [ScanNet
]: ScanNet [SUN RGB-D
]: SUN RGB-D
代码
标注代码实现框架: Tensorflow
: TensorFlow PyTorch
: PyTorch
2017
- [CVPR] PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [tensorflow][pytorch] [
lidar
] 🔥⭐️ - [CVPR] Multi-View 3D Object Detection Network for Autonomous Driving. [tensorflow] [
image+lidar
] [kitti
]🔥 ⭐️ - [ICRA] Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks. [code_matlab] [
lidar
] [kitti
]⭐️ - [IROS] 3D fully convolutional network for vehicle detection in point cloud. [tensorflow] [
lidar
] [kitti
]🔥 ⭐️
2018
- [CVPR] PIXOR: Real-time 3D Object Detection from Point Clouds. [pytorch] [
lidar
] [kitti
][ATG4D
] - [CVPR] VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. [tensorflow] [
lidar
] [kitti
]🔥🔥🔥 ⭐️ - [CVPR] PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation. [code] [
image+lidar
] [kitti
] - [CVPR] Frustum PointNets for 3D Object Detection from RGB-D Data. [tensorflow] [
image+lidar
] [kitti
] 🔥 ⭐️ - [ECCV] Deep Continuous Fusion for Multi-Sensor 3D Object Detection. [
image+lidar
] [kitti
] [ATG4D
] - [ECCVW] YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud. [
monocular
] [kitti
] - [ICRA] End-to-end Learning of Multi-sensor 3D Tracking by Detection. [
image+lidar
] [kitti
] - [ICRA] Robust Real-Time 3D Person Detection for Indoor and Outdoor Applications. [
lidar
] [kitti
] - [ICRA] A General Pipeline for 3D Detection of Vehicles.[
lidar
] [kitti
] - [IROS] Joint 3D Proposal Generation and Object Detection from View Aggregation. [
lidar
] [kitti
]⭐️ - [IROS] Edge and Corner Detection for Unorganized 3D Point Clouds with Application to Robotic Welding. [
lidar
] [kitti
] - [SENSORS] SECOND: Sparsely Embedded Convolutional Detection. [pytorch][
lidar
] [kitti
] 🔥🔥🔥🔥 - [arXiv] IPOD: Intensive Point-based Object Detector for Point Cloud. [
image+lidar
] [kitti
] - [arXiv] Complex-YOLO: Real-time 3D Object Detection on Point Clouds. [pytorch] [
lidar
] [kitti
] 🔥
2019
- [CVPR] Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. [code] [
stereo
][kitti
] - [CVPR] Stereo R-CNN based 3D Object Detection for Autonomous Driving. [code] [
stereo
][kitti
] - [CVPR] PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. [pytorch] [
lidar
] [kitti
]🔥 - [CVPR] PointPillars: Fast Encoders for Object Detection from Point Clouds. [pytorch] [
lidar
] [kitti
]🔥 - [CVPR] LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving.[
lidar
] [kitti
][ATG4D
] - [CVPRW] Attentional PointNet for 3D-Object Detection in Point Clouds. [pytorch] [
lidar
] [kitti
] - [ICCV] Fast Point R-CNN. [
lidar
] [kitti
] - [ICCV] STD: Sparse-to-Dense 3D Object Detector for Point Cloud.[pytorch] [
lidar
] [kitti
] - [ICCV] M3D-RPN: Monocular 3D Region Proposal Network for Object Detection.[pytorch] [
monocular
] [kitti
] - [ICCVW] Range Adaptation for 3D Object Detection in LiDAR. [
lidar
] [kitti
] - [ICCVW] Multi-View Reprojection Architecture for Orientation Estimation. [
monocular
] [kitti
] - [NeurIPS] Point-Voxel CNN for Efficient 3D Deep Learning. [
lidar
] [kitti
] - [ICMLW] LiDAR Sensor modeling and Data augmentation with GANs for Autonomous driving. [
lidar
] - [ICRA] Focal Loss in 3D Object Detection. [code] [
lidar
] [kitti
] - [ICRA] SEG-VoxelNet for 3D Vehicle Detection from RGB and LiDAR Data. [
lidar
] [kitti
] - [ICRA] MVX-Net: Multimodal VoxelNet for 3D Object Detection. [
lidar
] [kitti
] - [AAAI] MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. [
monocular
] [kitti
] - [IROS] EPN: Edge-Aware PointNet for Object Recognition from Multi-View 2.5D Point Clouds. [tensorflow] [
lidar
] [kitti
] - [IROS] Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. [pytorch] [
lidar+image
] [kitti
] - [IROS] Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. [
lidar
] [kitti
] - [3DV] IoU Loss for 2D/3D Object Detection. [
lidar
] [kitti
] - [arXiv] Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. [
monocular
][kitti
] - [arXiv] FVNet: 3D Front-View Proposal Generation for Real-Time Object Detection from Point Clouds. [code] [
lidar
] [kitti
] - [CVPRW] Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. [pytorch] [
monocular
][kitti
]🔥 - [CVPR] Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. [pytorch] [
monocular
][kitti
] - [CVPR] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. [
monocular
][kitti
] - [CVPR] ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. [
monocular
][kitti
] - [CVPR] Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. [pytorch] [
stereo
][kitti
] - [CoRR] 3D Backbone Network for 3D Object Detection. [code] [
lidar
] [kitti
] - [arXiv] nuScenes: A multimodal dataset for autonomous driving. [link] [
dataset
] - [arXiv] Deformable Filter Convolution for Point Cloud Reasoning.[
lidar
] [kitti
][ATG4D
] - [arXiv] PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement.[
lidar
] [kitti
][ATG4D
]
2020
- [TPAMI] Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud. [pytorch][
lidar
] [kitti
] - [AAAI] TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. [code] [
lidar
] [kitti
] - [AAAI] PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. [
lidar+image
] [kitti
] - [AAAI] ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. [code] [
stereo
] [kitti
] - [AAAI] Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. [
monocular
] [kitti
] - [CVPR] PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. [pytorch] [
lidar
] [kitti
] [waymo
]🔥 ⭐️ 🔥 ⭐️ - [CVPR] Structure Aware Single-stage 3D Object Detection from Point Cloud. [pytorch] [
lidar
] [kitti
] 🔥 ⭐️ - [CVPR]3DSSD: Point-based 3D Single Stage Object Detector. [TensorFlow] [
lidar
] [kitti
][nusc
] 🔥 ⭐️ - [CVPR]Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. [TensorFlow] [
lidar
] [kitti
] 🔥 ⭐️ - [CVPR]Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. [
lidar
] [kitti
] - [CVPR]PnPNet: End-to-End Perception and Prediction with Tracking in the Loop. [
lidar
] - [CVPR] Train in Germany, Test in The USA: Making 3D Object Detectors Generalize.[code] [
lidar
] - [CVPR] PointPainting: Sequential Fusion for 3D Object Detection. [
lidar+image
] [kitti
] [nusc
] - [CVPR] DSGN: Deep Stereo Geometry Network for 3D Object Detection. [
monocular
] [kitti
] - [CVPR] Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation.[code] [
stereo
] [kitti
] - [CVPR] Learning Depth-Guided Convolutions for Monocular 3D Object Detection.[code] [
monocular
] [kitti
] - [CVPR] MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. [
monocular
] [kitti
] - [CVPR] LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention. [
lidar_video
] [nusc
] - [CVPR] Physically Realizable Adversarial Examples for LiDAR Object Detection. [
lidar
] - [CVPR]HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection. [
lidar
] [kitti
] - [CVPR]Learning to Evaluate Perception Models Using Planner-Centric Metrics. [
lidar
] - [CVPR]What You See is What You Get: Exploiting Visibility for 3D Object Detection. [
lidar
] [nusc
] - [CVPR]MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye View Maps. [
lidar
] - [ECCVW] Deformable PV-RCNN: Improving 3D Object Detection with Learned Deformations.[code][
lidar
] [kitti
] - [ECCV] object as hotspots.[
lidar
] [kitti
] - [ECCV] EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection.[
lidar+image
] [kitti
] - [ECCV] 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection.[
lidar+image
] [kitti
] - [ECCV] Kinematic 3D Object Detection in Monocular Video.[code][
monocular_video
] [kitti
] - [ECCV] Rethinking Pseudo-LiDAR Representation.[code][
monocular
] [kitti
] - [ECCV] An LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds.[
lidar
] [kitti
] - [ECCV] Pillar-based Object Detection for Autonomous Driving.[
lidar
] [waymo
] - [ECCV] Active Perception using Light Curtains for Autonomous Driving.[code][
lidar
] - [ECCV] Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution.[
lidar
] - [ECCV] Improving 3D Object Detection through Progressive Population Based Augmentation.[
lidar
] [kitti
] - [IROS] MVLidarNet: Real-Time Multi-Class Scene Understanding for Autonomous Driving Using Multiple Views.[
lidar
] [nusc
] - [ACMMM] Weakly Supervised 3D Object Detection from Point Clouds.[
lidar
] - [BMVC] RV-FuseNet: Range View based Fusion of Time-Series LiDAR Data for Joint 3D Object Detection and Motion Forecasting [
lidar
][nusc
] - [Sensors] 3D-GIoU: 3D Generalized Intersection over Union for Object Detection in Point Cloud [
lidar
][kitti
] - [arxiv] 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds [
lidar
][kitti
] - [arxiv] Center-based 3D Object Detection and Tracking [code][
lidar
][nusc
] - [arxiv] Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object Detection from Point Clouds [
lidar
][nusc
] - [arxiv] InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic Information Modeling [
lidar
][nusc
] - [arxiv] Quantifying Data Augmentation for LiDAR based 3D Object Detection [
lidar
][kitti
] - [arxiv] Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection [
lidar
][kitti
][nusc
] - [arxiv] Real-time 3D object proposal generation and classification under limited processing resources [
lidar
][kitti
] - [arxiv] Safety-Aware Hardening of 3D Object Detection Neural Network Systems [
lidar
][kitti
] - [arxiv] Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection[
stereo
][kitti
] - [arxiv] SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds [code][
lidar
][kitti
] - [arxiv] SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
[lidar
][kitti
] - [arxiv] GhostBuster: Looking Into Shadows to Detect Ghost Objects in Autonomous Vehicle 3D Sensing [
lidar
][kitti
] - [arxiv] Cross-Modality 3D Object Detection [
lidar
][kitti
] - [arxiv] Towards Autonomous Driving: a Multi-Modal 360∘ Perception Proposal[
lidar
][kitti
] - [arxiv] Accurate 3D Object Detection using Energy-Based Models. [code][
lidar
][kitti
]
2021
- [AAAI] CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. [pytorch] [
lidar
] [kitti
] - [AAAI] Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection. [
lidar
] [kitti
] [waymo
] - [AAAI] RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving. [pytorch] [
monocular
] [kitti
] - [AAAI] PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection. [
lidar
] [kitti
] - [CVPR] SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. [code] [
lidar
] [kitti
] 🔥 ⭐️ 🔥 ⭐️ - [CVPR] Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds. [pytorch] [
lidar
] [ScanNet
] [SUN RGB-D
] - [CVPR] Objects are Different: Flexible Monocular 3D Object Detection. [code] [
monocular
] [kitti
] - [CVPR] HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection. [
lidar
] [kitti
] - [CVPR] GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. [pytorch] [
monocular
] [kitti
] - [CVPR] Delving into Localization Errors for Monocular 3D Object Detection. [code] [
monocular
] [kitti
] - [CVPR] Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. [code] [
monocular
] [kitti
] - [CVPR] LiDAR R-CNN: An Efficient and Universal 3D Object Detector. [pytorch] [
lidar
] [kitti
] [waymo
]🔥 ⭐️ 🔥 ⭐️ - [CVPR] M3DSSD: Monocular 3D Single Stage Object Detector. [
monocular
] [kitti
] - [CVPR] MonoRUn: Monocular 3D Object Detection by Self-Supervised Reconstruction and Uncertainty Propagation.[
monocular
] [kitti
] - [CVPR] ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection. [pytorch] [
lidar
] [kitti
] - [CVPR] Center-based 3D Object Detection and Tracking. [pytorch] [
lidar
] [kitti
] [waymo
]🔥 ⭐️ - [CVPR] 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection. [pytorch] [
lidar
] [kitti
] [ScanNet
] [SUN RGB-D
] - [CVPR] Categorical Depth Distribution Network for Monocular 3D Object Detection. [
monocular
] [kitti
] [waymo
] - [ARXIV] PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection. [pytorch] [
lidar
] [kitti
] [waymo
]🔥 ⭐️🔥 ⭐️ - [CVPR] Monocular 3D Object Detection: An Extrinsic Parameter Free Approach [
monocular
] [kitti
] - [CVPR] SRDAN: Scale-aware and Range-aware Domain Adaptation Network for Cross-dataset 3D Object Detection [
lidar
] [kitti
] - [CVPR] PVGNet: A Bottom-Up One-Stage 3D Object Detector with Integrated Multi-Level Features [
lidar
] [kitti
] - [CVPR] PointAugmenting: Cross-Modal Augmentation for 3D Object Detection [
image+lidar
] [nusc
][waymo
] - [CVPR] To the Point: Efficient 3D Object Detection in the Range Image with Graph Convolution Kernels [
RGB-D
] [waymo
] - [CVPR] RangeIoUDet: Range Image based Real-Time 3D Object Detector Optimized by Intersection over Union [
RGB-D
] [kitti
] - [CVPR] RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection [
lidar
] [kitti
] - [CVPR] 3D Object Detection with Pointformer [pytorch][
lidar
] [ScanNet
] [SUN RGB-D
] - [CVPR] Offboard 3D Object Detection from Point Cloud Sequences [
lidar
] [waymo
] - [CVPR] 3D-MAN: 3D Multi-frame Attention Network for Object Detection [
video
] [waymo
] - [ICCV] An End-to-End Transformer Model for 3D Object Detection [
lidar
] [ScanNet
] [SUN RGB-D
] 🔥 ⭐️ 🔥 ⭐️ - [ICCV] Group-Free 3D Object Detection via Transformers [
lidar
] [ScanNet
] [SUN RGB-D
] 🔥 ⭐️ 🔥 ⭐️ - [ICCV] Improving 3D Object Detection with Channel-wise Transformer [
lidar
] [kitti
] - [ICCV] AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [
monocular
] [kitti
] - [ICCV] 4D-Net for Learned Multi-Modal Alignment[
lidar+RGB
] [waymo
] - [ICCV] Voxel Transformer for 3D Object Detection [
lidar
] [kitti
] - [ICCV] Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection[
lidar
] [kitti
] - [ICCV] RangeDet:In Defense of Range View for LiDAR-based 3D Object Detection[
lidar
] [waymo
] - [ICCV] Geometry-based Distance Decomposition for Monocular 3D Object Detection [
monocular
] [kitti
] - [ICCV] It’s All Around You: Range-Guided Cylindrical Network for 3D Object Detection [
lidar
] [nuse
] - [ICCV] SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation [
lidar
] [waymo
] [kitti
] - [ICCV] Graph Convolutional Networks for 3D Object Detection on Radar Data [
radar
] [Private Dataset
] - [ICCV] Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection? [
monocular
] [kitti
] - [IEEE] Transformer3D-Det: Improving 3D Object Detection by Vote Refinement [
lidar
] [ScanNet
] [SUN RGB-D
] - [IEEE] Ground-Aware Monocular 3D Object Detection for Autonomous Driving [
monocular
] [kitti
] - [WACV] CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection[
radar+RGB
] [nuse
]
Suvery
- [TPAMI] Deep Learning for 3D Point Clouds: A Survey[
lidar
] - [ARXIV] 3D Point Cloud Processing and Learning for Autonomous Driving[
lidar
] - [ELSEVIER] Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy[
lidar
]
项目
- [lidar_only] second.pytorch [
kitti
][nusc
] - [lidar_only] Det3D [
kitti
][nusc
][lyft
][waymo
] - [lidar_only] OpenPCDet[
kitti
][nusc
][waymo
] - [lidar_image] mmdetection3d[
kitti
][nusc
][lyft
][waymo
]
Reference
版权声明:本文为CSDN博主「SoaringPigeon」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_45429089/article/details/117409515
暂无评论