文章目录[隐藏]
记录一下自己常用的检测方法
-------------------------------------------------------
使用
特别要注意:输入的topic
1.voxel_grid_filter:对原始点云进行降采样
2.ray_ground_filter:对降采样后的点云进行点云地面过滤,将地面点和非地面点进行分离
3.lidar_euclidean_cluster_detect:对非地面点进行聚类
voxel_grid_filter
Points topic:输入点云话题,选择/points_raw
Voxel Leaf Size:滤波时创建的体素大小为0.1m的立方体。过大的Leaf Size虽然会使速度变快,但聚类的结果会相对变差,尤其是对于反射较为微弱的物体(如远处的行人)
Measurement Range:滤波范围
ray_ground_filter
input_point_topic:输入点云话题,选择voxel_grid_filter发布的/filtered_points
sensor_height:激光雷达高度
clipping_height:裁剪高度,例如裁剪1.28m以上部分(以雷达为原点)
min_point_distance:最近的点云距离,1.85代表过滤掉1.85m范围内的点云,为了消除车身自身的雷达反射的影响
radial_divider_angle:distance in rads between dividers
lidar_euclidean_cluster_detect
use_gpu:是否使用GPU
output_frame:输出坐标系
pose_estimation:使用最小面积边界矩形估计簇的姿态 Estimate the pose of the cluster using a minimum-area bounding rectangle
downsample_cloud:pointcloud downsampling via VoxelGrid filter
input_points_node:输入点云topic,选择/points_no_ground
leaf size:下采样体素网格大小
cluster size minimum:聚类的最少点数
cluster size maximum:聚类的最多点数
clustering distance:聚类公差(m)
clip_min_height:裁剪的最小高度
clip_max_height:裁剪的最大高度
use_vector_map:
vectormap_frame:
wayarea_gridmap_topic:
wayarea_gridmap_topic:
wayarea_no_road_value:
remove_points_upto:Points closer than this distance to the lidar will be removed
keep_only_lanes_points:side-filtering
keep_lane_left_distance:Remove points further than this distance to the left (m)
keep_lane_right_distance:Remove points further than this distance to the right (m)
cluster_merge_threshold:聚类簇间的距离 Distance between cluster centroids (m)
use_multiple_thres:use of distance-based clustering tolerances 基于距离的聚类
clustering_ranges:Distance from lidar (m)
clustering_distances:聚类公差 Clustering tolerances (m)
remove ground:ground plane filtering (removes points belonging to the ground)
use_diffnormals: Difference-of-Normals filtering
publisher filtered:
效果
节点关系图
单独使用
lidar_euclidean_cluster_detect
效果图(不是很好)
节点图
版权声明:本文为CSDN博主「m0_57579469」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_57579469/article/details/122159235
暂无评论