【CVPR 2021】基于解耦特征的目标检测知识蒸馏:Distilling Object Detectors via Decoupled Features

文章目录[隐藏]

论文地址:

https://arxiv.org/abs/2103.14475

主要问题:

与图像分类不同的是,目标检测的知识蒸馏更加复杂,因为它往往具有具有多个损失函数,其中语义信息所依赖的特征纠缠在一起

此外其他的目标检测

版权声明:本文为CSDN博主「BIT可达鸭」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44936889/article/details/119062449

BIT可达鸭

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【模型压缩】Yolov3目标检测模型蒸馏实验

PaddleDetection知识蒸馏 知识蒸馏主要是让让新模型(通常是一个参数量更少的模型)近似原模型(模型即函数)。注意到,在机器学习中,我们常常假定输入到输出有一个潜在的函数关系,这个函数是未知的:从头学习一个新模型就是从有限的数据中近