多尺度特征的提取

1、图像金字塔

将图片进行不同尺度的缩放,得到图像金字塔,然后对每层图片提取不同尺度的特征,得到特征图。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。
特点:不同尺度的特征都可以包含很丰富的语义信息,精度高 ,但速度慢。

2、多尺度的卷积层

conv-3的低网络层,有更小的感受野,获取的是低层信息,对小目标的提取能力更好;而高层如conv-5,获取的是高层语义信息,对于大目标的检测更加准确。对于不同的输出层设计不同尺度的目标检测器,完成多尺度下的检测问题。卷积网络不同层得到的特征特点的不同,对不同层的特征采用不同的利用方式。

3、SSD

4、U-Net

6、FPN(特征金字塔)

FPN网络最开始是为目标检测而设计的,在之前的目标检测网络中通常是使用顶层特征做预测,但是低层语义信息少,对小目标检测不准确;后来有网络采用多尺度信息融合的方式,用融合后的特征做预测。FPN的特殊之处在于预测是在不同特征层独立进行的。

(a)图像金字塔,即将图像做成不同的scale,然后不同scale的图像生成对应的不同scale的特征。这种方法的缺点在于增加了时间成本。有些算法会在测试时候采用图像金字塔。
(b)像SPP net,Fast RCNN,Faster RCNN是采用这种方式,即仅采用网络最后一层的特征。
(c)像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。
(d)本文作者是采用这种方式,顶层特征通过上采样和低层特征做融合,而且每层都是独立预测的。

 

版权声明:本文为CSDN博主「BlueBlueBiuBiu」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wuruivv/article/details/115226147

BlueBlueBiuBiu

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

深度学习之目标检测YOLOv5

一.简介 YOLOV4出现之后不久,YOLOv5横空出世。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析&#xff0

目标检测—全卷积实现

目标检测—全卷积实现 首先照例分享学习资源:带你逐行手写单目标检测算法,从数据到模型搭建、训练、预测_哔哩哔哩_bilibili 一.相关知识点的学习 二分类交叉熵: ​   其实现的公式&#xf

目标检测入坑指南4:GoogLeNet神经网络

前面介绍的三个神经网络都是“串联”的,仅仅是卷积层的不断堆叠,结构比较简单。接下来两篇博客要介绍的GoogLeNet和ResNet中开始出现“并联”结构,这也是正式进入目标检测算法前最后要介绍的两个神经